Введите задачу...
Тригонометрия Примеры
Этап 1
Поменяем переменные местами.
Этап 2
Этап 2.1
Перепишем уравнение в виде .
Этап 2.2
Умножим обе части на .
Этап 2.3
Упростим левую часть.
Этап 2.3.1
Сократим общий множитель .
Этап 2.3.1.1
Сократим общий множитель.
Этап 2.3.1.2
Перепишем это выражение.
Этап 2.4
Решим относительно .
Этап 2.4.1
Перепишем уравнение в виде .
Этап 2.4.2
Разделим каждый член на и упростим.
Этап 2.4.2.1
Разделим каждый член на .
Этап 2.4.2.2
Упростим левую часть.
Этап 2.4.2.2.1
Сократим общий множитель .
Этап 2.4.2.2.1.1
Сократим общий множитель.
Этап 2.4.2.2.1.2
Разделим на .
Этап 2.4.3
Возьмем натуральный логарифм обеих частей уравнения, чтобы удалить переменную из показателя степени.
Этап 2.4.4
Развернем , вынося из логарифма.
Этап 2.4.5
Разделим каждый член на и упростим.
Этап 2.4.5.1
Разделим каждый член на .
Этап 2.4.5.2
Упростим левую часть.
Этап 2.4.5.2.1
Сократим общий множитель .
Этап 2.4.5.2.1.1
Сократим общий множитель.
Этап 2.4.5.2.1.2
Разделим на .
Этап 3
Заменим на , чтобы получить окончательный ответ.
Этап 4
Этап 4.1
Чтобы подтвердить обратную, проверим выполнение условий и .
Этап 4.2
Найдем значение .
Этап 4.2.1
Представим результирующую суперпозицию функций.
Этап 4.2.2
Найдем значение , подставив значение в .
Этап 4.2.3
Упростим числитель.
Этап 4.2.3.1
Умножим числитель на величину, обратную знаменателю.
Этап 4.2.3.2
Умножим на .
Этап 4.2.4
Развернем , вынося из логарифма.
Этап 4.2.5
Сократим общий множитель .
Этап 4.2.5.1
Сократим общий множитель.
Этап 4.2.5.2
Разделим на .
Этап 4.3
Найдем значение .
Этап 4.3.1
Представим результирующую суперпозицию функций.
Этап 4.3.2
Найдем значение , подставив значение в .
Этап 4.3.3
Упростим знаменатель.
Этап 4.3.3.1
Используем изменение основного правила .
Этап 4.3.3.2
Экспонента и логарифм являются обратными функциями.
Этап 4.3.4
Умножим числитель на величину, обратную знаменателю.
Этап 4.3.5
Умножим на .
Этап 4.4
Так как и , то — обратная к .