Тригонометрия Примеры

Этап 1
Упростим .
Нажмите для увеличения количества этапов...
Этап 1.1
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 1.1.1
Применим свойство дистрибутивности.
Этап 1.1.2
Применим свойство дистрибутивности.
Этап 1.1.3
Применим свойство дистрибутивности.
Этап 1.2
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.2.1.1
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 1.2.1.1.1
Перенесем .
Этап 1.2.1.1.2
Умножим на .
Этап 1.2.1.2
Умножим на .
Этап 1.2.1.3
Перепишем в виде .
Этап 1.2.1.4
Умножим на .
Этап 1.2.2
Вычтем из .
Этап 2
Перенесем все члены в левую часть уравнения и упростим.
Нажмите для увеличения количества этапов...
Этап 2.1
Вычтем из обеих частей неравенства.
Этап 2.2
Вычтем из .
Этап 3
Преобразуем неравенство в уравнение.
Этап 4
Используем формулу для нахождения корней квадратного уравнения.
Этап 5
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 6
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 6.1.1
Возведем в степень .
Этап 6.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 6.1.2.1
Умножим на .
Этап 6.1.2.2
Умножим на .
Этап 6.1.3
Добавим и .
Этап 6.1.4
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 6.1.4.1
Вынесем множитель из .
Этап 6.1.4.2
Перепишем в виде .
Этап 6.1.5
Вынесем члены из-под знака корня.
Этап 6.2
Умножим на .
Этап 6.3
Упростим .
Этап 7
Объединим решения.
Этап 8
Используем каждый корень для создания контрольных интервалов.
Этап 9
Выберем тестовое значение из каждого интервала и подставим это значение в исходное неравенство для определения интервалов, удовлетворяющих неравенству.
Нажмите для увеличения количества этапов...
Этап 9.1
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 9.1.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 9.1.2
Заменим на в исходном неравенстве.
Этап 9.1.3
Левая часть не меньше правой части , значит, данное утверждение ложно.
Ложь
Ложь
Этап 9.2
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 9.2.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 9.2.2
Заменим на в исходном неравенстве.
Этап 9.2.3
Левая часть меньше правой части , значит, данное утверждение всегда истинно.
Истина
Истина
Этап 9.3
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 9.3.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 9.3.2
Заменим на в исходном неравенстве.
Этап 9.3.3
Левая часть не меньше правой части , значит, данное утверждение ложно.
Ложь
Ложь
Этап 9.4
Сравним интервалы, чтобы определить, какие из них удовлетворяют исходному неравенству.
Ложь
Истина
Ложь
Ложь
Истина
Ложь
Этап 10
Решение состоит из всех истинных интервалов.
Этап 11
Результат можно представить в различном виде.
Форма неравенства:
Интервальное представление:
Этап 12