Тригонометрия Примеры

Risolvere per x ((x-1)(3-x))/((x-2)^2)>0
Этап 1
Найдем все значения, где выражение переменяет знак с отрицательного на положительный. Для этого приравняем каждый множитель к и решим.
Этап 2
Добавим к обеим частям уравнения.
Этап 3
Вычтем из обеих частей уравнения.
Этап 4
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 4.1
Разделим каждый член на .
Этап 4.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 4.2.2
Разделим на .
Этап 4.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Разделим на .
Этап 5
Приравняем к .
Этап 6
Добавим к обеим частям уравнения.
Этап 7
Решим для каждого множителя, чтобы найти значения, при которых выражение абсолютного значения переходит от отрицательного значения к положительному.
Этап 8
Объединим решения.
Этап 9
Найдем область определения .
Нажмите для увеличения количества этапов...
Этап 9.1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 9.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 9.2.1
Приравняем к .
Этап 9.2.2
Добавим к обеим частям уравнения.
Этап 9.3
Область определения ― это все значения , при которых выражение определено.
Этап 10
Используем каждый корень для создания контрольных интервалов.
Этап 11
Выберем тестовое значение из каждого интервала и подставим это значение в исходное неравенство для определения интервалов, удовлетворяющих неравенству.
Нажмите для увеличения количества этапов...
Этап 11.1
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 11.1.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 11.1.2
Заменим на в исходном неравенстве.
Этап 11.1.3
Левая часть не больше правой части , значит, данное утверждение ложно.
False
False
Этап 11.2
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 11.2.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 11.2.2
Заменим на в исходном неравенстве.
Этап 11.2.3
Левая часть больше правой части , значит, данное утверждение всегда истинно.
True
True
Этап 11.3
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 11.3.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 11.3.2
Заменим на в исходном неравенстве.
Этап 11.3.3
Левая часть больше правой части , значит, данное утверждение всегда истинно.
True
True
Этап 11.4
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 11.4.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 11.4.2
Заменим на в исходном неравенстве.
Этап 11.4.3
Левая часть не больше правой части , значит, данное утверждение ложно.
False
False
Этап 11.5
Сравним интервалы, чтобы определить, какие из них удовлетворяют исходному неравенству.
Ложь
Истина
Истина
Ложь
Ложь
Истина
Истина
Ложь
Этап 12
Решение состоит из всех истинных интервалов.
или
Этап 13
Результат можно представить в различном виде.
Форма неравенства:
Интервальное представление:
Этап 14