Тригонометрия Примеры

Этап 1
Подставим вместо .
Этап 2
Вычтем из обеих частей уравнения.
Этап 3
Используем формулу для нахождения корней квадратного уравнения.
Этап 4
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 5
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 5.1.1
Возведем в степень .
Этап 5.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 5.1.2.1
Умножим на .
Этап 5.1.2.2
Умножим на .
Этап 5.1.3
Вычтем из .
Этап 5.1.4
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 5.1.4.1
Вынесем множитель из .
Этап 5.1.4.2
Перепишем в виде .
Этап 5.1.5
Вынесем члены из-под знака корня.
Этап 5.2
Умножим на .
Этап 5.3
Упростим .
Этап 6
Окончательный ответ является комбинацией обоих решений.
Этап 7
Подставим вместо .
Этап 8
Выпишем каждое выражение, чтобы найти решение для .
Этап 9
Решим относительно в .
Нажмите для увеличения количества этапов...
Этап 9.1
Множество значений синуса: . Поскольку не попадает в этот диапазон, решение отсутствует.
Нет решения
Нет решения
Этап 10
Решим относительно в .
Нажмите для увеличения количества этапов...
Этап 10.1
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 10.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 10.2.1
Найдем значение .
Этап 10.3
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 10.4
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 10.4.1
Избавимся от скобок.
Этап 10.4.2
Избавимся от скобок.
Этап 10.4.3
Вычтем из .
Этап 10.5
Найдем период .
Нажмите для увеличения количества этапов...
Этап 10.5.1
Период функции можно вычислить по формуле .
Этап 10.5.2
Заменим на в формуле периода.
Этап 10.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 10.5.4
Разделим на .
Этап 10.6
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Этап 11
Перечислим все решения.
, для любого целого