Тригонометрия Примеры

Risolvere per x -110cos(x)=40cos(x)^2+60
Этап 1
Перенесем все выражения в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 1.1
Вычтем из обеих частей уравнения.
Этап 1.2
Вычтем из обеих частей уравнения.
Этап 2
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 2.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 2.1.1
Вынесем множитель из .
Этап 2.1.2
Вынесем множитель из .
Этап 2.1.3
Вынесем множитель из .
Этап 2.1.4
Вынесем множитель из .
Этап 2.1.5
Вынесем множитель из .
Этап 2.2
Пусть . Подставим вместо для всех.
Этап 2.3
Разложим на множители методом группировки
Нажмите для увеличения количества этапов...
Этап 2.3.1
Изменим порядок членов.
Этап 2.3.2
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Вынесем множитель из .
Этап 2.3.2.2
Запишем как плюс
Этап 2.3.2.3
Применим свойство дистрибутивности.
Этап 2.3.3
Вынесем наибольший общий делитель из каждой группы.
Нажмите для увеличения количества этапов...
Этап 2.3.3.1
Сгруппируем первые два члена и последние два члена.
Этап 2.3.3.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 2.3.4
Разложим многочлен, вынеся наибольший общий делитель .
Этап 2.4
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 2.4.1
Заменим все вхождения на .
Этап 2.4.2
Избавимся от ненужных скобок.
Этап 3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.1
Приравняем к .
Этап 4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.2.1
Добавим к обеим частям уравнения.
Этап 4.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Разделим каждый член на .
Этап 4.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.2.2.2.1.1
Сократим общий множитель.
Этап 4.2.2.2.1.2
Разделим на .
Этап 4.2.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.2.3.1
Вынесем знак минуса перед дробью.
Этап 4.2.3
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
Этап 4.2.4
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.4.1
Найдем значение .
Этап 4.2.5
Функция косинуса отрицательна во втором и третьем квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в третьем квадранте.
Этап 4.2.6
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.2.6.1
Избавимся от скобок.
Этап 4.2.6.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 4.2.6.2.1
Умножим на .
Этап 4.2.6.2.2
Вычтем из .
Этап 4.2.7
Найдем период .
Нажмите для увеличения количества этапов...
Этап 4.2.7.1
Период функции можно вычислить по формуле .
Этап 4.2.7.2
Заменим на в формуле периода.
Этап 4.2.7.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 4.2.7.4
Разделим на .
Этап 4.2.8
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
, для любого целого
Этап 5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1
Приравняем к .
Этап 5.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.2.1
Вычтем из обеих частей уравнения.
Этап 5.2.2
Множество значений косинуса: . Поскольку не попадает в это множество, решение отсутствует.
Нет решения
Нет решения
Нет решения
Этап 6
Окончательным решением являются все значения, при которых верно.
, для любого целого