Введите задачу...
Тригонометрия Примеры
Этап 1
Этап 1.1
Упростим .
Этап 1.1.1
Преобразуем в неправильную дробь.
Этап 1.1.1.1
Смешанное число представляет собой сумму своих целой и дробной частей.
Этап 1.1.1.2
Добавим и .
Этап 1.1.1.2.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.1.1.2.2
Объединим и .
Этап 1.1.1.2.3
Объединим числители над общим знаменателем.
Этап 1.1.1.2.4
Упростим числитель.
Этап 1.1.1.2.4.1
Умножим на .
Этап 1.1.1.2.4.2
Добавим и .
Этап 1.1.2
Умножим на .
Этап 2
Этап 2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Этап 2.3
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 2.4
Поскольку не имеет множителей, кроме и .
— простое число
Этап 2.5
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 2.6
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.7
Множители — , то есть , умноженный сам на себя раз.
встречается раз.
Этап 2.8
Множителем является само значение .
встречается раз.
Этап 2.9
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.10
Умножим на .
Этап 2.11
НОК представляет собой произведение числовой части и переменной части.
Этап 3
Этап 3.1
Умножим каждый член на .
Этап 3.2
Упростим левую часть.
Этап 3.2.1
Упростим каждый член.
Этап 3.2.1.1
Сократим общий множитель .
Этап 3.2.1.1.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 3.2.1.1.2
Сократим общий множитель.
Этап 3.2.1.1.3
Перепишем это выражение.
Этап 3.2.1.2
Перепишем, используя свойство коммутативности умножения.
Этап 3.2.1.3
Сократим общий множитель .
Этап 3.2.1.3.1
Вынесем множитель из .
Этап 3.2.1.3.2
Сократим общий множитель.
Этап 3.2.1.3.3
Перепишем это выражение.
Этап 3.2.1.4
Сократим общий множитель .
Этап 3.2.1.4.1
Вынесем множитель из .
Этап 3.2.1.4.2
Сократим общий множитель.
Этап 3.2.1.4.3
Перепишем это выражение.
Этап 3.2.1.5
Сократим общий множитель .
Этап 3.2.1.5.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 3.2.1.5.2
Вынесем множитель из .
Этап 3.2.1.5.3
Сократим общий множитель.
Этап 3.2.1.5.4
Перепишем это выражение.
Этап 3.3
Упростим правую часть.
Этап 3.3.1
Умножим .
Этап 3.3.1.1
Умножим на .
Этап 3.3.1.2
Умножим на .
Этап 4
Этап 4.1
Используем формулу для нахождения корней квадратного уравнения.
Этап 4.2
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 4.3
Упростим.
Этап 4.3.1
Упростим числитель.
Этап 4.3.1.1
Возведем в степень .
Этап 4.3.1.2
Умножим .
Этап 4.3.1.2.1
Умножим на .
Этап 4.3.1.2.2
Умножим на .
Этап 4.3.1.3
Вычтем из .
Этап 4.3.1.4
Перепишем в виде .
Этап 4.3.1.5
Перепишем в виде .
Этап 4.3.1.6
Перепишем в виде .
Этап 4.3.1.7
Перепишем в виде .
Этап 4.3.1.7.1
Вынесем множитель из .
Этап 4.3.1.7.2
Перепишем в виде .
Этап 4.3.1.8
Вынесем члены из-под знака корня.
Этап 4.3.1.9
Перенесем влево от .
Этап 4.3.2
Умножим на .
Этап 4.3.3
Упростим .
Этап 4.4
Окончательный ответ является комбинацией обоих решений.