Введите задачу...
Тригонометрия Примеры
Этап 1
Возьмем обратный тангенс обеих частей уравнения, чтобы извлечь из тангенса.
Этап 2
Этап 2.1
Точное значение : .
Этап 3
Этап 3.1
Добавим к обеим частям неравенства.
Этап 3.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.3
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Этап 3.3.1
Умножим на .
Этап 3.3.2
Умножим на .
Этап 3.4
Объединим числители над общим знаменателем.
Этап 3.5
Упростим числитель.
Этап 3.5.1
Перенесем влево от .
Этап 3.5.2
Добавим и .
Этап 4
Этап 4.1
Разделим каждый член на .
Этап 4.2
Упростим левую часть.
Этап 4.2.1
Сократим общий множитель .
Этап 4.2.1.1
Сократим общий множитель.
Этап 4.2.1.2
Разделим на .
Этап 4.3
Упростим правую часть.
Этап 4.3.1
Умножим числитель на величину, обратную знаменателю.
Этап 4.3.2
Сократим общий множитель .
Этап 4.3.2.1
Вынесем множитель из .
Этап 4.3.2.2
Сократим общий множитель.
Этап 4.3.2.3
Перепишем это выражение.
Этап 5
Функция тангенса положительна в первом и третьем квадрантах. Для нахождения второго решения прибавим угол приведения из и найдем решение в четвертом квадранте.
Этап 6
Этап 6.1
Упростим .
Этап 6.1.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 6.1.2
Объединим дроби.
Этап 6.1.2.1
Объединим и .
Этап 6.1.2.2
Объединим числители над общим знаменателем.
Этап 6.1.3
Упростим числитель.
Этап 6.1.3.1
Перенесем влево от .
Этап 6.1.3.2
Добавим и .
Этап 6.2
Перенесем все члены без в правую часть уравнения.
Этап 6.2.1
Добавим к обеим частям уравнения.
Этап 6.2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 6.2.3
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Этап 6.2.3.1
Умножим на .
Этап 6.2.3.2
Умножим на .
Этап 6.2.4
Объединим числители над общим знаменателем.
Этап 6.2.5
Упростим числитель.
Этап 6.2.5.1
Перенесем влево от .
Этап 6.2.5.2
Добавим и .
Этап 6.3
Разделим каждый член на и упростим.
Этап 6.3.1
Разделим каждый член на .
Этап 6.3.2
Упростим левую часть.
Этап 6.3.2.1
Сократим общий множитель .
Этап 6.3.2.1.1
Сократим общий множитель.
Этап 6.3.2.1.2
Разделим на .
Этап 6.3.3
Упростим правую часть.
Этап 6.3.3.1
Умножим числитель на величину, обратную знаменателю.
Этап 6.3.3.2
Умножим .
Этап 6.3.3.2.1
Умножим на .
Этап 6.3.3.2.2
Умножим на .
Этап 7
Этап 7.1
Период функции можно вычислить по формуле .
Этап 7.2
Заменим на в формуле периода.
Этап 7.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 8
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
Этап 9
Объединим ответы.
, для любого целого
Этап 10
Этап 10.1
Зададим аргумент в равным , чтобы узнать, где данное выражение не определено.
, для любого целого
Этап 10.2
Решим относительно .
Этап 10.2.1
Перенесем все члены без в правую часть уравнения.
Этап 10.2.1.1
Добавим к обеим частям уравнения.
Этап 10.2.1.2
Объединим числители над общим знаменателем.
Этап 10.2.1.3
Добавим и .
Этап 10.2.1.4
Сократим общий множитель .
Этап 10.2.1.4.1
Сократим общий множитель.
Этап 10.2.1.4.2
Разделим на .
Этап 10.2.2
Разделим каждый член на и упростим.
Этап 10.2.2.1
Разделим каждый член на .
Этап 10.2.2.2
Упростим левую часть.
Этап 10.2.2.2.1
Сократим общий множитель .
Этап 10.2.2.2.1.1
Сократим общий множитель.
Этап 10.2.2.2.1.2
Разделим на .
Этап 10.3
Область определения ― это все значения , при которых выражение определено.
, для любого целого числа
, для любого целого числа
Этап 11
Используем каждый корень для создания контрольных интервалов.
Этап 12
Этап 12.1
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 12.1.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 12.1.2
Заменим на в исходном неравенстве.
Этап 12.1.3
Левая часть больше правой части , значит, данное утверждение всегда истинно.
True
True
Этап 12.2
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 12.2.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 12.2.2
Заменим на в исходном неравенстве.
Этап 12.2.3
Левая часть не больше правой части , значит, данное утверждение ложно.
False
False
Этап 12.3
Сравним интервалы, чтобы определить, какие из них удовлетворяют исходному неравенству.
Истина
Ложь
Истина
Ложь
Этап 13
Решение состоит из всех истинных интервалов.
, для любого целого
Этап 14
Преобразуем неравенство в интервальное представление.
Этап 15