Тригонометрия Примеры

Этап 1
Применим форму , чтобы найти переменные, используемые для вычисления амплитуды, периода, сдвига фазы и смещения по вертикали.
Этап 2
Найдем амплитуду .
Амплитуда:
Этап 3
Найдем период .
Нажмите для увеличения количества этапов...
Этап 3.1
Период функции можно вычислить по формуле .
Этап 3.2
Заменим на в формуле периода.
Этап 3.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 3.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.4.1
Сократим общий множитель.
Этап 3.4.2
Разделим на .
Этап 4
Найдем сдвиг фазы, используя формулу .
Нажмите для увеличения количества этапов...
Этап 4.1
Сдвиг фазы функции можно вычислить по формуле .
Сдвиг фазы:
Этап 4.2
Заменим величины и в уравнении на сдвиг фазы.
Сдвиг фазы:
Этап 4.3
Умножим числитель на величину, обратную знаменателю.
Сдвиг фазы:
Этап 4.4
Умножим .
Нажмите для увеличения количества этапов...
Этап 4.4.1
Умножим на .
Сдвиг фазы:
Этап 4.4.2
Умножим на .
Сдвиг фазы:
Сдвиг фазы:
Сдвиг фазы:
Этап 5
Перечислим свойства тригонометрической функции.
Амплитуда:
Период:
Сдвиг фазы: ( влево)
Смещение по вертикали: нет
Этап 6
Выберем несколько точек для построения графика.
Нажмите для увеличения количества этапов...
Этап 6.1
Найдем точку в .
Нажмите для увеличения количества этапов...
Этап 6.1.1
Заменим в этом выражении переменную на .
Этап 6.1.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 6.1.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 6.1.2.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.1.2.1.1.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 6.1.2.1.1.2
Вынесем множитель из .
Этап 6.1.2.1.1.3
Сократим общий множитель.
Этап 6.1.2.1.1.4
Перепишем это выражение.
Этап 6.1.2.1.2
Вынесем знак минуса перед дробью.
Этап 6.1.2.2
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 6.1.2.2.1
Объединим числители над общим знаменателем.
Этап 6.1.2.2.2
Добавим и .
Этап 6.1.2.2.3
Разделим на .
Этап 6.1.2.3
Точное значение : .
Этап 6.1.2.4
Умножим на .
Этап 6.1.2.5
Окончательный ответ: .
Этап 6.2
Найдем точку в .
Нажмите для увеличения количества этапов...
Этап 6.2.1
Заменим в этом выражении переменную на .
Этап 6.2.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 6.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.2.2.1.1
Вынесем множитель из .
Этап 6.2.2.1.2
Сократим общий множитель.
Этап 6.2.2.1.3
Перепишем это выражение.
Этап 6.2.2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 6.2.2.3
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Нажмите для увеличения количества этапов...
Этап 6.2.2.3.1
Умножим на .
Этап 6.2.2.3.2
Умножим на .
Этап 6.2.2.4
Объединим числители над общим знаменателем.
Этап 6.2.2.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 6.2.2.5.1
Перенесем влево от .
Этап 6.2.2.5.2
Добавим и .
Этап 6.2.2.6
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 6.2.2.6.1
Вынесем множитель из .
Этап 6.2.2.6.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 6.2.2.6.2.1
Вынесем множитель из .
Этап 6.2.2.6.2.2
Сократим общий множитель.
Этап 6.2.2.6.2.3
Перепишем это выражение.
Этап 6.2.2.7
Точное значение : .
Этап 6.2.2.8
Умножим на .
Этап 6.2.2.9
Окончательный ответ: .
Этап 6.3
Найдем точку в .
Нажмите для увеличения количества этапов...
Этап 6.3.1
Заменим в этом выражении переменную на .
Этап 6.3.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 6.3.2.1
Объединим и .
Этап 6.3.2.2
Объединим числители над общим знаменателем.
Этап 6.3.2.3
Добавим и .
Этап 6.3.2.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.3.2.4.1
Сократим общий множитель.
Этап 6.3.2.4.2
Разделим на .
Этап 6.3.2.5
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте. Добавим минус к выражению, так как косинус отрицательный во втором квадранте.
Этап 6.3.2.6
Точное значение : .
Этап 6.3.2.7
Умножим .
Нажмите для увеличения количества этапов...
Этап 6.3.2.7.1
Умножим на .
Этап 6.3.2.7.2
Умножим на .
Этап 6.3.2.8
Окончательный ответ: .
Этап 6.4
Найдем точку в .
Нажмите для увеличения количества этапов...
Этап 6.4.1
Заменим в этом выражении переменную на .
Этап 6.4.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 6.4.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.4.2.1.1
Вынесем множитель из .
Этап 6.4.2.1.2
Сократим общий множитель.
Этап 6.4.2.1.3
Перепишем это выражение.
Этап 6.4.2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 6.4.2.3
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Нажмите для увеличения количества этапов...
Этап 6.4.2.3.1
Умножим на .
Этап 6.4.2.3.2
Умножим на .
Этап 6.4.2.4
Объединим числители над общим знаменателем.
Этап 6.4.2.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 6.4.2.5.1
Перенесем влево от .
Этап 6.4.2.5.2
Добавим и .
Этап 6.4.2.6
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 6.4.2.6.1
Вынесем множитель из .
Этап 6.4.2.6.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 6.4.2.6.2.1
Вынесем множитель из .
Этап 6.4.2.6.2.2
Сократим общий множитель.
Этап 6.4.2.6.2.3
Перепишем это выражение.
Этап 6.4.2.7
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте.
Этап 6.4.2.8
Точное значение : .
Этап 6.4.2.9
Умножим на .
Этап 6.4.2.10
Окончательный ответ: .
Этап 6.5
Найдем точку в .
Нажмите для увеличения количества этапов...
Этап 6.5.1
Заменим в этом выражении переменную на .
Этап 6.5.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 6.5.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.5.2.1.1
Вынесем множитель из .
Этап 6.5.2.1.2
Сократим общий множитель.
Этап 6.5.2.1.3
Перепишем это выражение.
Этап 6.5.2.2
Объединим числители над общим знаменателем.
Этап 6.5.2.3
Добавим и .
Этап 6.5.2.4
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 6.5.2.4.1
Вынесем множитель из .
Этап 6.5.2.4.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 6.5.2.4.2.1
Вынесем множитель из .
Этап 6.5.2.4.2.2
Сократим общий множитель.
Этап 6.5.2.4.2.3
Перепишем это выражение.
Этап 6.5.2.4.2.4
Разделим на .
Этап 6.5.2.5
Удалим число полных оборотов , чтобы угол оказался больше или равен и меньше .
Этап 6.5.2.6
Точное значение : .
Этап 6.5.2.7
Умножим на .
Этап 6.5.2.8
Окончательный ответ: .
Этап 6.6
Перечислим точки в таблице.
Этап 7
График тригонометрической функции можно построить, используя амплитуду, период, сдвиг фазы, смещение по вертикали и точки.
Амплитуда:
Период:
Сдвиг фазы: ( влево)
Смещение по вертикали: нет
Этап 8