Тригонометрия Примеры

Risolvere per y (sin(150))/270=(sin(y))/150
Этап 1
Перепишем уравнение в виде .
Этап 2
Умножим обе части уравнения на .
Этап 3
Упростим обе части уравнения.
Нажмите для увеличения количества этапов...
Этап 3.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.1.1.1
Сократим общий множитель.
Этап 3.1.1.2
Перепишем это выражение.
Этап 3.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 3.2.1.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1.1.1
Вынесем множитель из .
Этап 3.2.1.1.1.2
Вынесем множитель из .
Этап 3.2.1.1.1.3
Сократим общий множитель.
Этап 3.2.1.1.1.4
Перепишем это выражение.
Этап 3.2.1.1.2
Объединим и .
Этап 3.2.1.2
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 3.2.1.2.1
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте.
Этап 3.2.1.2.2
Точное значение : .
Этап 3.2.1.3
Объединим и .
Этап 3.2.1.4
Умножим числитель на величину, обратную знаменателю.
Этап 3.2.1.5
Умножим .
Нажмите для увеличения количества этапов...
Этап 3.2.1.5.1
Умножим на .
Этап 3.2.1.5.2
Умножим на .
Этап 4
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 5
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.1
Найдем значение .
Этап 6
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 7
Вычтем из .
Этап 8
Найдем период .
Нажмите для увеличения количества этапов...
Этап 8.1
Период функции можно вычислить по формуле .
Этап 8.2
Заменим на в формуле периода.
Этап 8.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 8.4
Разделим на .
Этап 9
Период функции равен . Поэтому значения повторяются через каждые град. в обоих направлениях.
, для любого целого