Тригонометрия Примеры

Этап 1
Заменим на на основе тождества .
Этап 2
Упорядочим многочлен.
Этап 3
Подставим вместо .
Этап 4
Добавим к обеим частям уравнения.
Этап 5
Добавим и .
Этап 6
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 6.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 6.2
Запишем разложение на множители, используя данные целые числа.
Этап 7
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 8
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 8.1
Приравняем к .
Этап 8.2
Вычтем из обеих частей уравнения.
Этап 9
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 9.1
Приравняем к .
Этап 9.2
Вычтем из обеих частей уравнения.
Этап 10
Окончательным решением являются все значения, при которых верно.
Этап 11
Подставим вместо .
Этап 12
Выпишем каждое выражение, чтобы найти решение для .
Этап 13
Решим относительно в .
Нажмите для увеличения количества этапов...
Этап 13.1
Применим обратный косеканс к обеим частям уравнения, чтобы извлечь из-под знака косеканса.
Этап 13.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 13.2.1
Точное значение : .
Этап 13.3
The cosecant function is negative in the third and fourth quadrants. To find the second solution, subtract the solution from , to find a reference angle. Next, add this reference angle to to find the solution in the third quadrant.
Этап 13.4
Упростим выражение, чтобы найти второе решение.
Нажмите для увеличения количества этапов...
Этап 13.4.1
Вычтем из .
Этап 13.4.2
Результирующий угол является положительным, меньшим и отличается от на полный оборот.
Этап 13.5
Найдем период .
Нажмите для увеличения количества этапов...
Этап 13.5.1
Период функции можно вычислить по формуле .
Этап 13.5.2
Заменим на в формуле периода.
Этап 13.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 13.5.4
Разделим на .
Этап 13.6
Добавим к каждому отрицательному углу, чтобы получить положительные углы.
Нажмите для увеличения количества этапов...
Этап 13.6.1
Добавим к , чтобы найти положительный угол.
Этап 13.6.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 13.6.3
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 13.6.3.1
Объединим и .
Этап 13.6.3.2
Объединим числители над общим знаменателем.
Этап 13.6.4
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 13.6.4.1
Умножим на .
Этап 13.6.4.2
Вычтем из .
Этап 13.6.5
Перечислим новые углы.
Этап 13.7
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Этап 14
Решим относительно в .
Нажмите для увеличения количества этапов...
Этап 14.1
Применим обратный косеканс к обеим частям уравнения, чтобы извлечь из-под знака косеканса.
Этап 14.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 14.2.1
Точное значение : .
Этап 14.3
The cosecant function is negative in the third and fourth quadrants. To find the second solution, subtract the solution from , to find a reference angle. Next, add this reference angle to to find the solution in the third quadrant.
Этап 14.4
Упростим выражение, чтобы найти второе решение.
Нажмите для увеличения количества этапов...
Этап 14.4.1
Вычтем из .
Этап 14.4.2
Результирующий угол является положительным, меньшим и отличается от на полный оборот.
Этап 14.5
Найдем период .
Нажмите для увеличения количества этапов...
Этап 14.5.1
Период функции можно вычислить по формуле .
Этап 14.5.2
Заменим на в формуле периода.
Этап 14.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 14.5.4
Разделим на .
Этап 14.6
Добавим к каждому отрицательному углу, чтобы получить положительные углы.
Нажмите для увеличения количества этапов...
Этап 14.6.1
Добавим к , чтобы найти положительный угол.
Этап 14.6.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 14.6.3
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 14.6.3.1
Объединим и .
Этап 14.6.3.2
Объединим числители над общим знаменателем.
Этап 14.6.4
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 14.6.4.1
Умножим на .
Этап 14.6.4.2
Вычтем из .
Этап 14.6.5
Перечислим новые углы.
Этап 14.7
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Этап 15
Перечислим все решения.
, для любого целого
Этап 16
Объединим и в .
, для любого целого