Тригонометрия Примеры

Risolvere per x (tan(x+1))(cos(x-1))=0
Этап 1
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.1
Приравняем к .
Этап 2.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Возьмем обратный тангенс обеих частей уравнения, чтобы извлечь из тангенса.
Этап 2.2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Точное значение : .
Этап 2.2.3
Вычтем из обеих частей уравнения.
Этап 2.2.4
Функция тангенса положительна в первом и третьем квадрантах. Для нахождения второго решения прибавим угол приведения из и найдем решение в четвертом квадранте.
Этап 2.2.5
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.2.5.1
Добавим и .
Этап 2.2.5.2
Вычтем из обеих частей уравнения.
Этап 2.2.6
Найдем период .
Нажмите для увеличения количества этапов...
Этап 2.2.6.1
Период функции можно вычислить по формуле .
Этап 2.2.6.2
Заменим на в формуле периода.
Этап 2.2.6.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 2.2.6.4
Разделим на .
Этап 2.2.7
Добавим к каждому отрицательному углу, чтобы получить положительные углы.
Нажмите для увеличения количества этапов...
Этап 2.2.7.1
Добавим к , чтобы найти положительный угол.
Этап 2.2.7.2
Перечислим новые углы.
Этап 2.2.8
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
, для любого целого
Этап 3
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Приравняем к .
Этап 3.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.2.1
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
Этап 3.2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Точное значение : .
Этап 3.2.3
Добавим к обеим частям уравнения.
Этап 3.2.4
Функция косинуса положительна в первом и четвертом квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в четвертом квадранте.
Этап 3.2.5
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.2.5.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.2.5.1.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.2.5.1.2
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 3.2.5.1.2.1
Объединим и .
Этап 3.2.5.1.2.2
Объединим числители над общим знаменателем.
Этап 3.2.5.1.3
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 3.2.5.1.3.1
Умножим на .
Этап 3.2.5.1.3.2
Вычтем из .
Этап 3.2.5.2
Добавим к обеим частям уравнения.
Этап 3.2.6
Найдем период .
Нажмите для увеличения количества этапов...
Этап 3.2.6.1
Период функции можно вычислить по формуле .
Этап 3.2.6.2
Заменим на в формуле периода.
Этап 3.2.6.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 3.2.6.4
Разделим на .
Этап 3.2.7
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
, для любого целого
Этап 4
Окончательным решением являются все значения, при которых верно.
, для любого целого
Этап 5
Объединим ответы.
Нажмите для увеличения количества этапов...
Этап 5.1
Объединим и в .
, для любого целого
Этап 5.2
Объединим и в .
, для любого целого
, для любого целого