Введите задачу...
Тригонометрия Примеры
Этап 1
Этап 1.1
Вычтем из обеих частей уравнения.
Этап 1.2
Вычтем из обеих частей уравнения.
Этап 2
Этап 2.1
Упростим члены.
Этап 2.1.1
Упростим каждый член.
Этап 2.1.1.1
Применим формулу двойного угла для синуса.
Этап 2.1.1.2
Используем формулу двойного угла для преобразования в .
Этап 2.1.1.3
Применим свойство дистрибутивности.
Этап 2.1.1.4
Умножим на .
Этап 2.1.1.5
Умножим на .
Этап 2.1.2
Упростим с помощью разложения.
Этап 2.1.2.1
Вычтем из .
Этап 2.1.2.2
Вынесем множитель из .
Этап 2.1.2.3
Вынесем множитель из .
Этап 2.1.2.4
Вынесем множитель из .
Этап 2.2
Применим формулу Пифагора.
Этап 3
Этап 3.1
Вынесем множитель из .
Этап 3.2
Вынесем множитель из .
Этап 3.3
Вынесем множитель из .
Этап 4
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 5
Этап 5.1
Приравняем к .
Этап 5.2
Решим относительно .
Этап 5.2.1
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
Этап 5.2.2
Упростим правую часть.
Этап 5.2.2.1
Точное значение : .
Этап 5.2.3
Функция косинуса положительна в первом и четвертом квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в четвертом квадранте.
Этап 5.2.4
Упростим .
Этап 5.2.4.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 5.2.4.2
Объединим дроби.
Этап 5.2.4.2.1
Объединим и .
Этап 5.2.4.2.2
Объединим числители над общим знаменателем.
Этап 5.2.4.3
Упростим числитель.
Этап 5.2.4.3.1
Умножим на .
Этап 5.2.4.3.2
Вычтем из .
Этап 5.2.5
Найдем период .
Этап 5.2.5.1
Период функции можно вычислить по формуле .
Этап 5.2.5.2
Заменим на в формуле периода.
Этап 5.2.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 5.2.5.4
Разделим на .
Этап 5.2.6
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
, для любого целого
Этап 6
Этап 6.1
Приравняем к .
Этап 6.2
Решим относительно .
Этап 6.2.1
Разделим каждый член уравнения на .
Этап 6.2.2
Переведем в .
Этап 6.2.3
Сократим общий множитель .
Этап 6.2.3.1
Сократим общий множитель.
Этап 6.2.3.2
Разделим на .
Этап 6.2.4
Разделим дроби.
Этап 6.2.5
Переведем в .
Этап 6.2.6
Разделим на .
Этап 6.2.7
Умножим на .
Этап 6.2.8
Добавим к обеим частям уравнения.
Этап 6.2.9
Возьмем обратный тангенс обеих частей уравнения, чтобы извлечь из тангенса.
Этап 6.2.10
Упростим правую часть.
Этап 6.2.10.1
Точное значение : .
Этап 6.2.11
Функция тангенса положительна в первом и третьем квадрантах. Для нахождения второго решения прибавим угол приведения из и найдем решение в четвертом квадранте.
Этап 6.2.12
Упростим .
Этап 6.2.12.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 6.2.12.2
Объединим дроби.
Этап 6.2.12.2.1
Объединим и .
Этап 6.2.12.2.2
Объединим числители над общим знаменателем.
Этап 6.2.12.3
Упростим числитель.
Этап 6.2.12.3.1
Перенесем влево от .
Этап 6.2.12.3.2
Добавим и .
Этап 6.2.13
Найдем период .
Этап 6.2.13.1
Период функции можно вычислить по формуле .
Этап 6.2.13.2
Заменим на в формуле периода.
Этап 6.2.13.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 6.2.13.4
Разделим на .
Этап 6.2.14
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
, для любого целого
Этап 7
Окончательным решением являются все значения, при которых верно.
, для любого целого
Этап 8
Этап 8.1
Объединим и в .
, для любого целого
Этап 8.2
Объединим и в .
, для любого целого
, для любого целого