Введите задачу...
Тригонометрия Примеры
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Этап 2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Этап 2.3
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 2.4
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 2.5
Поскольку не имеет множителей, кроме и .
— простое число
Этап 2.6
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.7
Множителем является само значение .
встречается раз.
Этап 2.8
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.9
НОК представляет собой произведение числовой части и переменной части.
Этап 3
Этап 3.1
Умножим каждый член на .
Этап 3.2
Упростим левую часть.
Этап 3.2.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.2.2
Умножим на , сложив экспоненты.
Этап 3.2.2.1
Перенесем .
Этап 3.2.2.2
Умножим на .
Этап 3.2.3
Умножим на .
Этап 3.3
Упростим правую часть.
Этап 3.3.1
Упростим каждый член.
Этап 3.3.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.3.1.2
Умножим .
Этап 3.3.1.2.1
Объединим и .
Этап 3.3.1.2.2
Умножим на .
Этап 3.3.1.3
Сократим общий множитель .
Этап 3.3.1.3.1
Сократим общий множитель.
Этап 3.3.1.3.2
Перепишем это выражение.
Этап 3.3.1.4
Сократим общий множитель .
Этап 3.3.1.4.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 3.3.1.4.2
Вынесем множитель из .
Этап 3.3.1.4.3
Сократим общий множитель.
Этап 3.3.1.4.4
Перепишем это выражение.
Этап 4
Этап 4.1
Добавим к обеим частям уравнения.
Этап 4.2
Вычтем из обеих частей уравнения.
Этап 4.3
Разложим на множители методом группировки
Этап 4.3.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Этап 4.3.1.1
Вынесем множитель из .
Этап 4.3.1.2
Запишем как плюс
Этап 4.3.1.3
Применим свойство дистрибутивности.
Этап 4.3.2
Вынесем наибольший общий делитель из каждой группы.
Этап 4.3.2.1
Сгруппируем первые два члена и последние два члена.
Этап 4.3.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 4.3.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 4.4
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4.5
Приравняем к , затем решим относительно .
Этап 4.5.1
Приравняем к .
Этап 4.5.2
Решим относительно .
Этап 4.5.2.1
Добавим к обеим частям уравнения.
Этап 4.5.2.2
Разделим каждый член на и упростим.
Этап 4.5.2.2.1
Разделим каждый член на .
Этап 4.5.2.2.2
Упростим левую часть.
Этап 4.5.2.2.2.1
Сократим общий множитель .
Этап 4.5.2.2.2.1.1
Сократим общий множитель.
Этап 4.5.2.2.2.1.2
Разделим на .
Этап 4.6
Приравняем к , затем решим относительно .
Этап 4.6.1
Приравняем к .
Этап 4.6.2
Вычтем из обеих частей уравнения.
Этап 4.7
Окончательным решением являются все значения, при которых верно.
Этап 5
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: