Тригонометрия Примеры

Этап 1
Добавим к обеим частям уравнения.
Этап 2
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
Этап 3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.1
Точное значение : .
Этап 4
Добавим к обеим частям уравнения.
Этап 5
Функция косинуса положительна в первом и четвертом квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в четвертом квадранте.
Этап 6
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.1
Вычтем из .
Этап 6.2
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Добавим к обеим частям уравнения.
Этап 6.2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 6.2.3
Объединим и .
Этап 6.2.4
Объединим числители над общим знаменателем.
Этап 6.2.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 6.2.5.1
Умножим на .
Этап 6.2.5.2
Добавим и .
Этап 7
Найдем период .
Нажмите для увеличения количества этапов...
Этап 7.1
Период функции можно вычислить по формуле .
Этап 7.2
Заменим на в формуле периода.
Этап 7.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 7.4
Разделим на .
Этап 8
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
Этап 9
Объединим ответы.
, для любого целого