Введите задачу...
Тригонометрия Примеры
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Этап 2.1
Разделим каждый член на .
Этап 2.2
Упростим левую часть.
Этап 2.2.1
Сократим общий множитель .
Этап 2.2.1.1
Сократим общий множитель.
Этап 2.2.1.2
Разделим на .
Этап 2.3
Упростим правую часть.
Этап 2.3.1
Вынесем знак минуса перед дробью.
Этап 2.3.2
Умножим на .
Этап 2.3.3
Объединим и упростим знаменатель.
Этап 2.3.3.1
Умножим на .
Этап 2.3.3.2
Возведем в степень .
Этап 2.3.3.3
Возведем в степень .
Этап 2.3.3.4
Применим правило степени для объединения показателей.
Этап 2.3.3.5
Добавим и .
Этап 2.3.3.6
Перепишем в виде .
Этап 2.3.3.6.1
С помощью запишем в виде .
Этап 2.3.3.6.2
Применим правило степени и перемножим показатели, .
Этап 2.3.3.6.3
Объединим и .
Этап 2.3.3.6.4
Сократим общий множитель .
Этап 2.3.3.6.4.1
Сократим общий множитель.
Этап 2.3.3.6.4.2
Перепишем это выражение.
Этап 2.3.3.6.5
Найдем экспоненту.
Этап 3
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 4
Этап 4.1
Точное значение : .
Этап 5
Этап 5.1
Разделим каждый член на .
Этап 5.2
Упростим левую часть.
Этап 5.2.1
Сократим общий множитель .
Этап 5.2.1.1
Сократим общий множитель.
Этап 5.2.1.2
Разделим на .
Этап 5.3
Упростим правую часть.
Этап 5.3.1
Умножим числитель на величину, обратную знаменателю.
Этап 5.3.2
Умножим .
Этап 5.3.2.1
Умножим на .
Этап 5.3.2.2
Умножим на .
Этап 6
Функция синуса отрицательна в третьем и четвертом квадрантах. Для нахождения второго решения вычтем решение из , чтобы найти угол приведения. Затем добавим этот угол приведения к и найдем решение в третьем квадранте.
Этап 7
Этап 7.1
Вычтем из .
Этап 7.2
Результирующий угол является положительным, меньшим и отличается от на полный оборот.
Этап 7.3
Разделим каждый член на и упростим.
Этап 7.3.1
Разделим каждый член на .
Этап 7.3.2
Упростим левую часть.
Этап 7.3.2.1
Сократим общий множитель .
Этап 7.3.2.1.1
Сократим общий множитель.
Этап 7.3.2.1.2
Разделим на .
Этап 7.3.3
Упростим правую часть.
Этап 7.3.3.1
Умножим числитель на величину, обратную знаменателю.
Этап 7.3.3.2
Умножим .
Этап 7.3.3.2.1
Умножим на .
Этап 7.3.3.2.2
Умножим на .
Этап 8
Этап 8.1
Период функции можно вычислить по формуле .
Этап 8.2
Заменим на в формуле периода.
Этап 8.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 8.4
Сократим общий множитель .
Этап 8.4.1
Сократим общий множитель.
Этап 8.4.2
Разделим на .
Этап 9
Этап 9.1
Добавим к , чтобы найти положительный угол.
Этап 9.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 9.3
Объединим дроби.
Этап 9.3.1
Объединим и .
Этап 9.3.2
Объединим числители над общим знаменателем.
Этап 9.4
Упростим числитель.
Этап 9.4.1
Перенесем влево от .
Этап 9.4.2
Вычтем из .
Этап 9.5
Перечислим новые углы.
Этап 10
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого