Тригонометрия Примеры

Этап 1
Заменим на на основе тождества .
Этап 2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.1
Применим свойство дистрибутивности.
Этап 2.2
Умножим на .
Этап 3
Добавим и .
Этап 4
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 4.1
Вычтем из обеих частей уравнения.
Этап 4.2
Вычтем из .
Этап 5
Вычтем из обеих частей уравнения.
Этап 6
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 6.1
Разделим каждый член на .
Этап 6.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.2.1.1
Сократим общий множитель.
Этап 6.2.1.2
Разделим на .
Этап 6.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 6.3.1
Разделим на .
Этап 7
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 8
Любой корень из равен .
Этап 9
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 9.1
Сначала с помощью положительного значения найдем первое решение.
Этап 9.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 9.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 10
Выпишем каждое выражение, чтобы найти решение для .
Этап 11
Решим относительно в .
Нажмите для увеличения количества этапов...
Этап 11.1
Применим обратный секанс к обеим частям уравнения, чтобы извлечь из-под знака секанса.
Этап 11.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 11.2.1
Точное значение : .
Этап 11.3
Функция секанса положительна в первом и четвертом квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в четвертом квадранте.
Этап 11.4
Вычтем из .
Этап 11.5
Найдем период .
Нажмите для увеличения количества этапов...
Этап 11.5.1
Период функции можно вычислить по формуле .
Этап 11.5.2
Заменим на в формуле периода.
Этап 11.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 11.5.4
Разделим на .
Этап 11.6
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Этап 12
Решим относительно в .
Нажмите для увеличения количества этапов...
Этап 12.1
Применим обратный секанс к обеим частям уравнения, чтобы извлечь из-под знака секанса.
Этап 12.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 12.2.1
Точное значение : .
Этап 12.3
Функция секанса отрицательна во втором и третьем квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в третьем квадранте.
Этап 12.4
Вычтем из .
Этап 12.5
Найдем период .
Нажмите для увеличения количества этапов...
Этап 12.5.1
Период функции можно вычислить по формуле .
Этап 12.5.2
Заменим на в формуле периода.
Этап 12.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 12.5.4
Разделим на .
Этап 12.6
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Этап 13
Перечислим все решения.
, для любого целого
Этап 14
Объединим ответы.
, для любого целого