Тригонометрия Примеры

Этап 1
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 1.1
Вычтем из обеих частей уравнения.
Этап 1.2
Вычтем из .
Этап 2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 2.1
Разделим каждый член на .
Этап 2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Сократим общий множитель.
Этап 2.2.1.2
Разделим на .
Этап 2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Разделим на .
Этап 3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 4
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 4.1
Сначала с помощью положительного значения найдем первое решение.
Этап 4.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 4.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 5
Выпишем каждое выражение, чтобы найти решение для .
Этап 6
Решим относительно в .
Нажмите для увеличения количества этапов...
Этап 6.1
Возьмем обратный котангенс обеих частей уравнения, чтобы извлечь из котангенса.
Этап 6.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Найдем значение .
Этап 6.3
Функция котангенса положительна в первом и третьем квадрантах. Для нахождения второго решения прибавим угол приведения из и найдем решение в четвертом квадранте.
Этап 6.4
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.4.1
Избавимся от скобок.
Этап 6.4.2
Избавимся от скобок.
Этап 6.4.3
Добавим и .
Этап 6.5
Найдем период .
Нажмите для увеличения количества этапов...
Этап 6.5.1
Период функции можно вычислить по формуле .
Этап 6.5.2
Заменим на в формуле периода.
Этап 6.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 6.5.4
Разделим на .
Этап 6.6
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Этап 7
Решим относительно в .
Нажмите для увеличения количества этапов...
Этап 7.1
Возьмем обратный котангенс обеих частей уравнения, чтобы извлечь из котангенса.
Этап 7.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 7.2.1
Найдем значение .
Этап 7.3
The cotangent function is negative in the second and fourth quadrants. To find the second solution, subtract the reference angle from to find the solution in the third quadrant.
Этап 7.4
Упростим выражение, чтобы найти второе решение.
Нажмите для увеличения количества этапов...
Этап 7.4.1
Добавим к .
Этап 7.4.2
Результирующий угол является положительным и отличается от на полный оборот.
Этап 7.5
Найдем период .
Нажмите для увеличения количества этапов...
Этап 7.5.1
Период функции можно вычислить по формуле .
Этап 7.5.2
Заменим на в формуле периода.
Этап 7.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 7.5.4
Разделим на .
Этап 7.6
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Этап 8
Перечислим все решения.
, для любого целого
Этап 9
Объединим решения.
Нажмите для увеличения количества этапов...
Этап 9.1
Объединим и в .
, для любого целого
Этап 9.2
Объединим и в .
, для любого целого
, для любого целого