Тригонометрия Примеры

Risolvere per x (cot(x)-1)( квадратный корень из 3cot(x)+1)=0
Этап 1
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.1
Приравняем к .
Этап 2.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Добавим к обеим частям уравнения.
Этап 2.2.2
Возьмем обратный котангенс обеих частей уравнения, чтобы извлечь из котангенса.
Этап 2.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.3.1
Точное значение : .
Этап 2.2.4
Функция котангенса положительна в первом и третьем квадрантах. Для нахождения второго решения прибавим угол приведения из и найдем решение в четвертом квадранте.
Этап 2.2.5
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.2.5.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.2.5.2
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 2.2.5.2.1
Объединим и .
Этап 2.2.5.2.2
Объединим числители над общим знаменателем.
Этап 2.2.5.3
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.2.5.3.1
Перенесем влево от .
Этап 2.2.5.3.2
Добавим и .
Этап 2.2.6
Найдем период .
Нажмите для увеличения количества этапов...
Этап 2.2.6.1
Период функции можно вычислить по формуле .
Этап 2.2.6.2
Заменим на в формуле периода.
Этап 2.2.6.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 2.2.6.4
Разделим на .
Этап 2.2.7
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
, для любого целого
Этап 3
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Приравняем к .
Этап 3.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.2.1
Вычтем из обеих частей уравнения.
Этап 3.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Разделим каждый член на .
Этап 3.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.2.2.1.1
Сократим общий множитель.
Этап 3.2.2.2.1.2
Разделим на .
Этап 3.2.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.2.3.1
Вынесем знак минуса перед дробью.
Этап 3.2.2.3.2
Умножим на .
Этап 3.2.2.3.3
Объединим и упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 3.2.2.3.3.1
Умножим на .
Этап 3.2.2.3.3.2
Возведем в степень .
Этап 3.2.2.3.3.3
Возведем в степень .
Этап 3.2.2.3.3.4
Применим правило степени для объединения показателей.
Этап 3.2.2.3.3.5
Добавим и .
Этап 3.2.2.3.3.6
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 3.2.2.3.3.6.1
С помощью запишем в виде .
Этап 3.2.2.3.3.6.2
Применим правило степени и перемножим показатели, .
Этап 3.2.2.3.3.6.3
Объединим и .
Этап 3.2.2.3.3.6.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.2.3.3.6.4.1
Сократим общий множитель.
Этап 3.2.2.3.3.6.4.2
Перепишем это выражение.
Этап 3.2.2.3.3.6.5
Найдем экспоненту.
Этап 3.2.3
Возьмем обратный котангенс обеих частей уравнения, чтобы извлечь из котангенса.
Этап 3.2.4
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.4.1
Точное значение : .
Этап 3.2.5
The cotangent function is negative in the second and fourth quadrants. To find the second solution, subtract the reference angle from to find the solution in the third quadrant.
Этап 3.2.6
Упростим выражение, чтобы найти второе решение.
Нажмите для увеличения количества этапов...
Этап 3.2.6.1
Добавим к .
Этап 3.2.6.2
Результирующий угол является положительным и отличается от на полный оборот.
Этап 3.2.7
Найдем период .
Нажмите для увеличения количества этапов...
Этап 3.2.7.1
Период функции можно вычислить по формуле .
Этап 3.2.7.2
Заменим на в формуле периода.
Этап 3.2.7.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 3.2.7.4
Разделим на .
Этап 3.2.8
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
, для любого целого
Этап 4
Окончательным решением являются все значения, при которых верно.
, для любого целого
Этап 5
Объединим ответы.
Нажмите для увеличения количества этапов...
Этап 5.1
Объединим и в .
, для любого целого
Этап 5.2
Объединим и в .
, для любого целого
, для любого целого