Введите задачу...
Тригонометрия Примеры
Этап 1
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2
Этап 2.1
Приравняем к .
Этап 2.2
Решим относительно .
Этап 2.2.1
Вычтем из обеих частей уравнения.
Этап 2.2.2
Возьмем обратный котангенс обеих частей уравнения, чтобы извлечь из котангенса.
Этап 2.2.3
Упростим правую часть.
Этап 2.2.3.1
Точное значение : .
Этап 2.2.4
The cotangent function is negative in the second and fourth quadrants. To find the second solution, subtract the reference angle from to find the solution in the third quadrant.
Этап 2.2.5
Упростим выражение, чтобы найти второе решение.
Этап 2.2.5.1
Добавим к .
Этап 2.2.5.2
Результирующий угол является положительным и отличается от на полный оборот.
Этап 2.2.6
Найдем период .
Этап 2.2.6.1
Период функции можно вычислить по формуле .
Этап 2.2.6.2
Заменим на в формуле периода.
Этап 2.2.6.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 2.2.6.4
Разделим на .
Этап 2.2.7
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
, для любого целого
Этап 3
Этап 3.1
Приравняем к .
Этап 3.2
Решим относительно .
Этап 3.2.1
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 3.2.2
Упростим правую часть.
Этап 3.2.2.1
Точное значение : .
Этап 3.2.3
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 3.2.4
Вычтем из .
Этап 3.2.5
Найдем период .
Этап 3.2.5.1
Период функции можно вычислить по формуле .
Этап 3.2.5.2
Заменим на в формуле периода.
Этап 3.2.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 3.2.5.4
Разделим на .
Этап 3.2.6
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
, для любого целого
Этап 4
Окончательным решением являются все значения, при которых верно.
, для любого целого
Этап 5
Этап 5.1
Объединим и в .
, для любого целого
Этап 5.2
Объединим и в .
, для любого целого
, для любого целого
Этап 6
Исключим решения, которые не делают истинным.
, для любого целого