Введите задачу...
Тригонометрия Примеры
Этап 1
Этап 1.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 1.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Этап 1.3
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 1.4
Поскольку не имеет множителей, кроме и .
— простое число
Этап 1.5
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 1.6
Поскольку не имеет множителей, кроме и .
— простое число
Этап 1.7
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 1.8
Множители — , то есть , умноженный сам на себя раз.
встречается раз.
Этап 1.9
Множителем является само значение .
встречается раз.
Этап 1.10
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 1.11
Умножим на .
Этап 1.12
НОК представляет собой произведение числовой части и переменной части.
Этап 2
Этап 2.1
Умножим каждый член на .
Этап 2.2
Упростим левую часть.
Этап 2.2.1
Перепишем, используя свойство коммутативности умножения.
Этап 2.2.2
Сократим общий множитель .
Этап 2.2.2.1
Вынесем множитель из .
Этап 2.2.2.2
Сократим общий множитель.
Этап 2.2.2.3
Перепишем это выражение.
Этап 2.2.3
Сократим общий множитель .
Этап 2.2.3.1
Сократим общий множитель.
Этап 2.2.3.2
Перепишем это выражение.
Этап 2.3
Упростим правую часть.
Этап 2.3.1
Упростим каждый член.
Этап 2.3.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 2.3.1.2
Объединим и .
Этап 2.3.1.3
Сократим общий множитель .
Этап 2.3.1.3.1
Вынесем множитель из .
Этап 2.3.1.3.2
Сократим общий множитель.
Этап 2.3.1.3.3
Перепишем это выражение.
Этап 2.3.1.4
Сократим общий множитель .
Этап 2.3.1.4.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 2.3.1.4.2
Вынесем множитель из .
Этап 2.3.1.4.3
Сократим общий множитель.
Этап 2.3.1.4.4
Перепишем это выражение.
Этап 3
Этап 3.1
Перепишем уравнение в виде .
Этап 3.2
Вычтем из обеих частей уравнения.
Этап 3.3
Разложим левую часть уравнения на множители.
Этап 3.3.1
Вынесем множитель из .
Этап 3.3.1.1
Изменим порядок и .
Этап 3.3.1.2
Вынесем множитель из .
Этап 3.3.1.3
Вынесем множитель из .
Этап 3.3.1.4
Перепишем в виде .
Этап 3.3.1.5
Вынесем множитель из .
Этап 3.3.1.6
Вынесем множитель из .
Этап 3.3.2
Разложим на множители, используя правило полных квадратов.
Этап 3.3.2.1
Перепишем в виде .
Этап 3.3.2.2
Проверим, чтобы средний член был равен удвоенному произведению корней из первого и третьего членов.
Этап 3.3.2.3
Перепишем многочлен.
Этап 3.3.2.4
Разложим на множители, используя правило выделения полного квадрата из квадратного трехчлена , где и .
Этап 3.4
Разделим каждый член на и упростим.
Этап 3.4.1
Разделим каждый член на .
Этап 3.4.2
Упростим левую часть.
Этап 3.4.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 3.4.2.2
Разделим на .
Этап 3.4.3
Упростим правую часть.
Этап 3.4.3.1
Разделим на .
Этап 3.5
Приравняем к .
Этап 3.6
Добавим к обеим частям уравнения.