Введите задачу...
Тригонометрия Примеры
Этап 1
Этап 1.1
Упростим .
Этап 1.1.1
Выразим через синусы и косинусы.
Этап 1.1.2
Умножим .
Этап 1.1.2.1
Объединим и .
Этап 1.1.2.2
Объединим и .
Этап 2
Умножим обе части уравнения на .
Этап 3
Этап 3.1
Сократим общий множитель.
Этап 3.2
Перепишем это выражение.
Этап 4
Перепишем, используя свойство коммутативности умножения.
Этап 5
Изменим порядок и .
Этап 6
Изменим порядок и .
Этап 7
Применим формулу двойного угла для синуса.
Этап 8
Вычтем из обеих частей уравнения.
Этап 9
Этап 9.1
Применим формулу двойного угла для синуса.
Этап 9.2
Умножим на .
Этап 10
Этап 10.1
Вынесем множитель из .
Этап 10.2
Вынесем множитель из .
Этап 10.3
Вынесем множитель из .
Этап 11
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 12
Этап 12.1
Приравняем к .
Этап 12.2
Решим относительно .
Этап 12.2.1
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 12.2.2
Упростим правую часть.
Этап 12.2.2.1
Точное значение : .
Этап 12.2.3
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 12.2.4
Вычтем из .
Этап 12.2.5
Найдем период .
Этап 12.2.5.1
Период функции можно вычислить по формуле .
Этап 12.2.5.2
Заменим на в формуле периода.
Этап 12.2.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 12.2.5.4
Разделим на .
Этап 12.2.6
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
, для любого целого
Этап 13
Этап 13.1
Приравняем к .
Этап 13.2
Решим относительно .
Этап 13.2.1
Вычтем из обеих частей уравнения.
Этап 13.2.2
Разделим каждый член на и упростим.
Этап 13.2.2.1
Разделим каждый член на .
Этап 13.2.2.2
Упростим левую часть.
Этап 13.2.2.2.1
Сократим общий множитель .
Этап 13.2.2.2.1.1
Сократим общий множитель.
Этап 13.2.2.2.1.2
Разделим на .
Этап 13.2.2.3
Упростим правую часть.
Этап 13.2.2.3.1
Деление двух отрицательных значений дает положительное значение.
Этап 13.2.3
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
Этап 13.2.4
Упростим правую часть.
Этап 13.2.4.1
Точное значение : .
Этап 13.2.5
Функция косинуса положительна в первом и четвертом квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в четвертом квадранте.
Этап 13.2.6
Упростим .
Этап 13.2.6.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 13.2.6.2
Объединим дроби.
Этап 13.2.6.2.1
Объединим и .
Этап 13.2.6.2.2
Объединим числители над общим знаменателем.
Этап 13.2.6.3
Упростим числитель.
Этап 13.2.6.3.1
Умножим на .
Этап 13.2.6.3.2
Вычтем из .
Этап 13.2.7
Найдем период .
Этап 13.2.7.1
Период функции можно вычислить по формуле .
Этап 13.2.7.2
Заменим на в формуле периода.
Этап 13.2.7.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 13.2.7.4
Разделим на .
Этап 13.2.8
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
, для любого целого
Этап 14
Окончательным решением являются все значения, при которых верно.
, для любого целого
Этап 15
Объединим и в .
, для любого целого