Введите задачу...
Тригонометрия Примеры
Этап 1
Заменим на на основе тождества .
Этап 2
Вычтем из .
Этап 3
Упорядочим многочлен.
Этап 4
Этап 4.1
Вычтем из обеих частей уравнения.
Этап 4.2
Вычтем из .
Этап 5
Этап 5.1
Разделим каждый член на .
Этап 5.2
Упростим левую часть.
Этап 5.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 5.2.2
Разделим на .
Этап 5.3
Упростим правую часть.
Этап 5.3.1
Разделим на .
Этап 6
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 7
Этап 7.1
Сначала с помощью положительного значения найдем первое решение.
Этап 7.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 7.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 8
Выпишем каждое выражение, чтобы найти решение для .
Этап 9
Этап 9.1
Возьмем обратный тангенс обеих частей уравнения, чтобы извлечь из тангенса.
Этап 9.2
Упростим правую часть.
Этап 9.2.1
Точное значение : .
Этап 9.3
Функция тангенса положительна в первом и третьем квадрантах. Для нахождения второго решения прибавим угол приведения из и найдем решение в четвертом квадранте.
Этап 9.4
Упростим .
Этап 9.4.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 9.4.2
Объединим дроби.
Этап 9.4.2.1
Объединим и .
Этап 9.4.2.2
Объединим числители над общим знаменателем.
Этап 9.4.3
Упростим числитель.
Этап 9.4.3.1
Перенесем влево от .
Этап 9.4.3.2
Добавим и .
Этап 9.5
Найдем период .
Этап 9.5.1
Период функции можно вычислить по формуле .
Этап 9.5.2
Заменим на в формуле периода.
Этап 9.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 9.5.4
Разделим на .
Этап 9.6
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Этап 10
Этап 10.1
Возьмем обратный тангенс обеих частей уравнения, чтобы извлечь из тангенса.
Этап 10.2
Упростим правую часть.
Этап 10.2.1
Точное значение : .
Этап 10.3
Функция тангенса отрицательна во втором и четвертом квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение в третьем квадранте.
Этап 10.4
Упростим выражение, чтобы найти второе решение.
Этап 10.4.1
Добавим к .
Этап 10.4.2
Результирующий угол является положительным и отличается от на полный оборот.
Этап 10.5
Найдем период .
Этап 10.5.1
Период функции можно вычислить по формуле .
Этап 10.5.2
Заменим на в формуле периода.
Этап 10.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 10.5.4
Разделим на .
Этап 10.6
Добавим к каждому отрицательному углу, чтобы получить положительные углы.
Этап 10.6.1
Добавим к , чтобы найти положительный угол.
Этап 10.6.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 10.6.3
Объединим дроби.
Этап 10.6.3.1
Объединим и .
Этап 10.6.3.2
Объединим числители над общим знаменателем.
Этап 10.6.4
Упростим числитель.
Этап 10.6.4.1
Перенесем влево от .
Этап 10.6.4.2
Вычтем из .
Этап 10.6.5
Перечислим новые углы.
Этап 10.7
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Этап 11
Перечислим все решения.
, для любого целого
Этап 12
Этап 12.1
Объединим и в .
, для любого целого
Этап 12.2
Объединим и в .
, для любого целого
, для любого целого