Введите задачу...
Тригонометрия Примеры
Этап 1
Заменим на на основе тождества .
Этап 2
Этап 2.1
Применим свойство дистрибутивности.
Этап 2.2
Умножим на .
Этап 3
Упорядочим многочлен.
Этап 4
Подставим вместо .
Этап 5
Этап 5.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Этап 5.1.1
Вынесем множитель из .
Этап 5.1.2
Запишем как плюс
Этап 5.1.3
Применим свойство дистрибутивности.
Этап 5.2
Вынесем наибольший общий делитель из каждой группы.
Этап 5.2.1
Сгруппируем первые два члена и последние два члена.
Этап 5.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 5.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 6
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 7
Этап 7.1
Приравняем к .
Этап 7.2
Решим относительно .
Этап 7.2.1
Добавим к обеим частям уравнения.
Этап 7.2.2
Разделим каждый член на и упростим.
Этап 7.2.2.1
Разделим каждый член на .
Этап 7.2.2.2
Упростим левую часть.
Этап 7.2.2.2.1
Сократим общий множитель .
Этап 7.2.2.2.1.1
Сократим общий множитель.
Этап 7.2.2.2.1.2
Разделим на .
Этап 8
Этап 8.1
Приравняем к .
Этап 8.2
Вычтем из обеих частей уравнения.
Этап 9
Окончательным решением являются все значения, при которых верно.
Этап 10
Подставим вместо .
Этап 11
Выпишем каждое выражение, чтобы найти решение для .
Этап 12
Этап 12.1
Множество значений косеканса: и . Поскольку не попадает в этот диапазон, решение отсутствует.
Нет решения
Нет решения
Этап 13
Этап 13.1
Применим обратный косеканс к обеим частям уравнения, чтобы извлечь из-под знака косеканса.
Этап 13.2
Упростим правую часть.
Этап 13.2.1
Точное значение : .
Этап 13.3
The cosecant function is negative in the third and fourth quadrants. To find the second solution, subtract the solution from , to find a reference angle. Next, add this reference angle to to find the solution in the third quadrant.
Этап 13.4
Упростим выражение, чтобы найти второе решение.
Этап 13.4.1
Вычтем из .
Этап 13.4.2
Результирующий угол является положительным, меньшим и отличается от на полный оборот.
Этап 13.5
Найдем период .
Этап 13.5.1
Период функции можно вычислить по формуле .
Этап 13.5.2
Заменим на в формуле периода.
Этап 13.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 13.5.4
Разделим на .
Этап 13.6
Добавим к каждому отрицательному углу, чтобы получить положительные углы.
Этап 13.6.1
Добавим к , чтобы найти положительный угол.
Этап 13.6.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 13.6.3
Объединим дроби.
Этап 13.6.3.1
Объединим и .
Этап 13.6.3.2
Объединим числители над общим знаменателем.
Этап 13.6.4
Упростим числитель.
Этап 13.6.4.1
Умножим на .
Этап 13.6.4.2
Вычтем из .
Этап 13.6.5
Перечислим новые углы.
Этап 13.7
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Этап 14
Перечислим все решения.
, для любого целого