Введите задачу...
Тригонометрия Примеры
Этап 1
Этап 1.1
Разделим каждый член на .
Этап 1.2
Упростим левую часть.
Этап 1.2.1
Сократим общий множитель .
Этап 1.2.1.1
Сократим общий множитель.
Этап 1.2.1.2
Разделим на .
Этап 1.3
Упростим правую часть.
Этап 1.3.1
Сократим общий множитель и .
Этап 1.3.1.1
Вынесем множитель из .
Этап 1.3.1.2
Сократим общие множители.
Этап 1.3.1.2.1
Вынесем множитель из .
Этап 1.3.1.2.2
Сократим общий множитель.
Этап 1.3.1.2.3
Перепишем это выражение.
Этап 2
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 3
Этап 3.1
Точное значение : .
Этап 4
Умножим обе части уравнения на .
Этап 5
Этап 5.1
Упростим левую часть.
Этап 5.1.1
Сократим общий множитель .
Этап 5.1.1.1
Сократим общий множитель.
Этап 5.1.1.2
Перепишем это выражение.
Этап 5.2
Упростим правую часть.
Этап 5.2.1
Объединим и .
Этап 6
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 7
Этап 7.1
Умножим обе части уравнения на .
Этап 7.2
Упростим обе части уравнения.
Этап 7.2.1
Упростим левую часть.
Этап 7.2.1.1
Сократим общий множитель .
Этап 7.2.1.1.1
Сократим общий множитель.
Этап 7.2.1.1.2
Перепишем это выражение.
Этап 7.2.2
Упростим правую часть.
Этап 7.2.2.1
Упростим .
Этап 7.2.2.1.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 7.2.2.1.2
Объединим дроби.
Этап 7.2.2.1.2.1
Объединим и .
Этап 7.2.2.1.2.2
Объединим числители над общим знаменателем.
Этап 7.2.2.1.3
Упростим числитель.
Этап 7.2.2.1.3.1
Перенесем влево от .
Этап 7.2.2.1.3.2
Вычтем из .
Этап 7.2.2.1.4
Умножим .
Этап 7.2.2.1.4.1
Объединим и .
Этап 7.2.2.1.4.2
Умножим на .
Этап 8
Этап 8.1
Период функции можно вычислить по формуле .
Этап 8.2
Заменим на в формуле периода.
Этап 8.3
приблизительно равно . Это положительное число, поэтому вычтем абсолютное значение.
Этап 8.4
Умножим числитель на величину, обратную знаменателю.
Этап 8.5
Умножим на .
Этап 9
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого