Тригонометрия Примеры

Найти пересечение с осями X и Y y=2+cot(x)
Этап 1
Найдем точки пересечения с осью x.
Нажмите для увеличения количества этапов...
Этап 1.1
Чтобы найти точки пересечения с осью x, подставим вместо и найдем решение для .
Этап 1.2
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Перепишем уравнение в виде .
Этап 1.2.2
Вычтем из обеих частей уравнения.
Этап 1.2.3
Возьмем обратный котангенс обеих частей уравнения, чтобы извлечь из котангенса.
Этап 1.2.4
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.4.1
Найдем значение .
Этап 1.2.5
Функция котангенса отрицательна во втором и четвертом квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение в третьем квадранте.
Этап 1.2.6
Упростим выражение, чтобы найти второе решение.
Нажмите для увеличения количества этапов...
Этап 1.2.6.1
Добавим к .
Этап 1.2.6.2
Результирующий угол является положительным и отличается от на полный оборот.
Этап 1.2.7
Найдем период .
Нажмите для увеличения количества этапов...
Этап 1.2.7.1
Период функции можно вычислить по формуле .
Этап 1.2.7.2
Заменим на в формуле периода.
Этап 1.2.7.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 1.2.7.4
Разделим на .
Этап 1.2.8
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
Этап 1.2.9
Объединим и в .
, для любого целого
, для любого целого
Этап 1.3
Точки пересечения с осью x в форме точки.
Точки пересечения с осью x: , для любого целого
Точки пересечения с осью x: , для любого целого
Этап 2
Найдем точку пересечения с осью Y.
Нажмите для увеличения количества этапов...
Этап 2.1
Чтобы найти точки пересечения с осью y, подставим вместо и найдем решение для .
Этап 2.2
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Избавимся от скобок.
Этап 2.2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.2.2.1.1
Выразим через синусы и косинусы.
Этап 2.2.2.1.2
Точное значение : .
Этап 2.2.2.2
Уравнение невозможно решить, потому что оно не определено.
Этап 2.3
Чтобы найти точки пересечения с осью y, подставим вместо и найдем решение для .
Точки пересечения с осью y:
Точки пересечения с осью y:
Этап 3
Перечислим пересечения.
Точки пересечения с осью x: , для любого целого
Точки пересечения с осью y:
Этап 4