Тригонометрия Примеры

Этап 1
Перепишем уравнение в виде .
Этап 2
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
Добавим к обеим частям уравнения.
Этап 2.2
Добавим и .
Этап 3
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.1
Разделим каждый член на .
Этап 3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Сократим общий множитель.
Этап 3.2.1.2
Разделим на .
Этап 3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Разделим на .
Этап 4
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 5
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 5.1
Сначала с помощью положительного значения найдем первое решение.
Этап 5.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 5.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 6
Выпишем каждое выражение, чтобы найти решение для .
Этап 7
Решим относительно в .
Нажмите для увеличения количества этапов...
Этап 7.1
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 7.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 7.2.1
Найдем значение .
Этап 7.3
Умножим обе части уравнения на .
Этап 7.4
Упростим обе части уравнения.
Нажмите для увеличения количества этапов...
Этап 7.4.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 7.4.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 7.4.1.1.1
Сократим общий множитель.
Этап 7.4.1.1.2
Перепишем это выражение.
Этап 7.4.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 7.4.2.1
Объединим и .
Этап 7.5
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 7.6
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 7.6.1
Умножим обе части уравнения на .
Этап 7.6.2
Упростим обе части уравнения.
Нажмите для увеличения количества этапов...
Этап 7.6.2.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 7.6.2.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 7.6.2.1.1.1
Сократим общий множитель.
Этап 7.6.2.1.1.2
Перепишем это выражение.
Этап 7.6.2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 7.6.2.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 7.6.2.2.1.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 7.6.2.2.1.2
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 7.6.2.2.1.2.1
Объединим и .
Этап 7.6.2.2.1.2.2
Объединим числители над общим знаменателем.
Этап 7.6.2.2.1.3
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 7.6.2.2.1.3.1
Перенесем влево от .
Этап 7.6.2.2.1.3.2
Вычтем из .
Этап 7.6.2.2.1.4
Умножим .
Нажмите для увеличения количества этапов...
Этап 7.6.2.2.1.4.1
Объединим и .
Этап 7.6.2.2.1.4.2
Умножим на .
Этап 7.7
Найдем период .
Нажмите для увеличения количества этапов...
Этап 7.7.1
Период функции можно вычислить по формуле .
Этап 7.7.2
Заменим на в формуле периода.
Этап 7.7.3
приблизительно равно . Это положительное число, поэтому вычтем абсолютное значение.
Этап 7.7.4
Умножим числитель на величину, обратную знаменателю.
Этап 7.7.5
Умножим на .
Этап 7.8
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Этап 8
Решим относительно в .
Нажмите для увеличения количества этапов...
Этап 8.1
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 8.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 8.2.1
Найдем значение .
Этап 8.3
Умножим обе части уравнения на .
Этап 8.4
Упростим обе части уравнения.
Нажмите для увеличения количества этапов...
Этап 8.4.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 8.4.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 8.4.1.1.1
Сократим общий множитель.
Этап 8.4.1.1.2
Перепишем это выражение.
Этап 8.4.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 8.4.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 8.4.2.1.1
Умножим .
Нажмите для увеличения количества этапов...
Этап 8.4.2.1.1.1
Умножим на .
Этап 8.4.2.1.1.2
Объединим и .
Этап 8.4.2.1.2
Вынесем знак минуса перед дробью.
Этап 8.5
Функция синуса отрицательна в третьем и четвертом квадрантах. Для нахождения второго решения вычтем решение из , чтобы найти угол приведения. Затем добавим этот угол приведения к и найдем решение в третьем квадранте.
Этап 8.6
Упростим выражение, чтобы найти второе решение.
Нажмите для увеличения количества этапов...
Этап 8.6.1
Вычтем из .
Этап 8.6.2
Результирующий угол является положительным, меньшим и отличается от на полный оборот.
Этап 8.6.3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 8.6.3.1
Умножим обе части уравнения на .
Этап 8.6.3.2
Упростим обе части уравнения.
Нажмите для увеличения количества этапов...
Этап 8.6.3.2.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 8.6.3.2.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 8.6.3.2.1.1.1
Сократим общий множитель.
Этап 8.6.3.2.1.1.2
Перепишем это выражение.
Этап 8.6.3.2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 8.6.3.2.2.1
Умножим .
Нажмите для увеличения количества этапов...
Этап 8.6.3.2.2.1.1
Объединим и .
Этап 8.6.3.2.2.1.2
Умножим на .
Этап 8.7
Найдем период .
Нажмите для увеличения количества этапов...
Этап 8.7.1
Период функции можно вычислить по формуле .
Этап 8.7.2
Заменим на в формуле периода.
Этап 8.7.3
приблизительно равно . Это положительное число, поэтому вычтем абсолютное значение.
Этап 8.7.4
Умножим числитель на величину, обратную знаменателю.
Этап 8.7.5
Умножим на .
Этап 8.8
Добавим к каждому отрицательному углу, чтобы получить положительные углы.
Нажмите для увеличения количества этапов...
Этап 8.8.1
Добавим к , чтобы найти положительный угол.
Этап 8.8.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 8.8.3
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 8.8.3.1
Объединим и .
Этап 8.8.3.2
Объединим числители над общим знаменателем.
Этап 8.8.4
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 8.8.4.1
Умножим на .
Этап 8.8.4.2
Вычтем из .
Этап 8.8.5
Перечислим новые углы.
Этап 8.9
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Этап 9
Перечислим все решения.
, для любого целого
Этап 10
Объединим ответы.
, для любого целого