Тригонометрия Примеры

Trovare gli Altri Valori Trigonometrici nel Quadrante I sin(x)=8/10
Этап 1
Воспользуемся определением синуса, чтобы найти известные стороны прямоугольного треугольника, вписанного в единичную окружность. Квадрант определяет знак каждого значения.
Этап 2
Найдем прилежащую сторону треугольника в единичной окружности. Поскольку гипотенуза и противолежащая сторона известны, используем теорему Пифагора, чтобы найти оставшуюся сторону.
Этап 3
Заменим известные значения в уравнении.
Этап 4
Упростим подкоренное выражение.
Нажмите для увеличения количества этапов...
Этап 4.1
Возведем в степень .
Смежный
Этап 4.2
Возведем в степень .
Смежный
Этап 4.3
Умножим на .
Смежный
Этап 4.4
Вычтем из .
Смежный
Этап 4.5
Перепишем в виде .
Смежный
Этап 4.6
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Смежный
Смежный
Этап 5
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 5.1
Вынесем множитель из .
Этап 5.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Вынесем множитель из .
Этап 5.2.2
Сократим общий множитель.
Этап 5.2.3
Перепишем это выражение.
Этап 6
Найдем значение косинуса.
Нажмите для увеличения количества этапов...
Этап 6.1
Воспользуемся определением косинуса, чтобы найти значение .
Этап 6.2
Подставим известные значения.
Этап 6.3
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 6.3.1
Вынесем множитель из .
Этап 6.3.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 6.3.2.1
Вынесем множитель из .
Этап 6.3.2.2
Сократим общий множитель.
Этап 6.3.2.3
Перепишем это выражение.
Этап 7
Найдем значение тангенса.
Нажмите для увеличения количества этапов...
Этап 7.1
Воспользуемся определением тангенса, чтобы найти значение .
Этап 7.2
Подставим известные значения.
Этап 7.3
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 7.3.1
Вынесем множитель из .
Этап 7.3.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 7.3.2.1
Вынесем множитель из .
Этап 7.3.2.2
Сократим общий множитель.
Этап 7.3.2.3
Перепишем это выражение.
Этап 8
Найдем значение котангенса.
Нажмите для увеличения количества этапов...
Этап 8.1
Воспользуемся определением котангенса, чтобы найти значение .
Этап 8.2
Подставим известные значения.
Этап 8.3
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 8.3.1
Вынесем множитель из .
Этап 8.3.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 8.3.2.1
Вынесем множитель из .
Этап 8.3.2.2
Сократим общий множитель.
Этап 8.3.2.3
Перепишем это выражение.
Этап 9
Найдем значение секанса.
Нажмите для увеличения количества этапов...
Этап 9.1
Воспользуемся определением секанса, чтобы найти значение .
Этап 9.2
Подставим известные значения.
Этап 9.3
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 9.3.1
Вынесем множитель из .
Этап 9.3.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 9.3.2.1
Вынесем множитель из .
Этап 9.3.2.2
Сократим общий множитель.
Этап 9.3.2.3
Перепишем это выражение.
Этап 10
Найдем значение косеканса.
Нажмите для увеличения количества этапов...
Этап 10.1
Воспользуемся определением косеканса, чтобы найти значение .
Этап 10.2
Подставим известные значения.
Этап 10.3
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 10.3.1
Вынесем множитель из .
Этап 10.3.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 10.3.2.1
Вынесем множитель из .
Этап 10.3.2.2
Сократим общий множитель.
Этап 10.3.2.3
Перепишем это выражение.
Этап 11
Это решение для каждого тригонометрического значения.