Введите задачу...
Тригонометрия Примеры
Этап 1
Перепишем уравнение в виде .
Этап 2
Чтобы избавиться от радикала в левой части уравнения, возведем обе части уравнения в квадрат.
Этап 3
Этап 3.1
С помощью запишем в виде .
Этап 3.2
Упростим левую часть.
Этап 3.2.1
Упростим .
Этап 3.2.1.1
Перемножим экспоненты в .
Этап 3.2.1.1.1
Применим правило степени и перемножим показатели, .
Этап 3.2.1.1.2
Сократим общий множитель .
Этап 3.2.1.1.2.1
Сократим общий множитель.
Этап 3.2.1.1.2.2
Перепишем это выражение.
Этап 3.2.1.2
Упростим.
Этап 4
Этап 4.1
Вычтем из обеих частей уравнения.
Этап 4.2
Разделим каждый член на и упростим.
Этап 4.2.1
Разделим каждый член на .
Этап 4.2.2
Упростим левую часть.
Этап 4.2.2.1
Сократим общий множитель .
Этап 4.2.2.1.1
Сократим общий множитель.
Этап 4.2.2.1.2
Разделим на .
Этап 4.2.3
Упростим правую часть.
Этап 4.2.3.1
Разделим на .
Этап 5
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Интервальное представление:
Обозначение построения множества:
Этап 6