Введите задачу...
Тригонометрия Примеры
Этап 1
Умножим числитель на величину, обратную знаменателю.
Этап 2
Этап 2.1
Перепишем в виде .
Этап 2.2
Перепишем в виде .
Этап 2.3
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 3
Этап 3.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Этап 3.1.1
Вынесем множитель из .
Этап 3.1.2
Запишем как плюс
Этап 3.1.3
Применим свойство дистрибутивности.
Этап 3.2
Вынесем наибольший общий делитель из каждой группы.
Этап 3.2.1
Сгруппируем первые два члена и последние два члена.
Этап 3.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 3.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 4
Этап 4.1
Сократим общий множитель.
Этап 4.2
Перепишем это выражение.
Этап 5
Этап 5.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 5.2
Запишем разложение на множители, используя данные целые числа.
Этап 6
Этап 6.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Этап 6.1.1
Умножим на .
Этап 6.1.2
Запишем как плюс
Этап 6.1.3
Применим свойство дистрибутивности.
Этап 6.2
Вынесем наибольший общий делитель из каждой группы.
Этап 6.2.1
Сгруппируем первые два члена и последние два члена.
Этап 6.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 6.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 7
Этап 7.1
Вынесем множитель из .
Этап 7.2
Сократим общий множитель.
Этап 7.3
Перепишем это выражение.
Этап 8
Этап 8.1
Вынесем множитель из .
Этап 8.2
Сократим общий множитель.
Этап 8.3
Перепишем это выражение.
Этап 9
Этап 9.1
Сократим общий множитель.
Этап 9.2
Перепишем это выражение.