Тригонометрия Примеры

Этап 1
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.1
Объединим и .
Этап 3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.1
Точное значение : .
Этап 4
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 4.1
Вычтем из обеих частей уравнения.
Этап 4.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 4.3
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Нажмите для увеличения количества этапов...
Этап 4.3.1
Умножим на .
Этап 4.3.2
Умножим на .
Этап 4.4
Объединим числители над общим знаменателем.
Этап 4.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.5.1
Перенесем влево от .
Этап 4.5.2
Вычтем из .
Этап 4.6
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 4.6.1
Вынесем множитель из .
Этап 4.6.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 4.6.2.1
Вынесем множитель из .
Этап 4.6.2.2
Сократим общий множитель.
Этап 4.6.2.3
Перепишем это выражение.
Этап 5
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 5.1
Разделим каждый член на .
Этап 5.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.2.1.1
Сократим общий множитель.
Этап 5.2.1.2
Разделим на .
Этап 5.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.3.1
Умножим числитель на величину, обратную знаменателю.
Этап 5.3.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.3.2.1
Сократим общий множитель.
Этап 5.3.2.2
Перепишем это выражение.
Этап 6
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 7
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 7.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 7.1.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 7.1.2
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 7.1.2.1
Объединим и .
Этап 7.1.2.2
Объединим числители над общим знаменателем.
Этап 7.1.3
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 7.1.3.1
Перенесем влево от .
Этап 7.1.3.2
Вычтем из .
Этап 7.2
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 7.2.1
Вычтем из обеих частей уравнения.
Этап 7.2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 7.2.3
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Нажмите для увеличения количества этапов...
Этап 7.2.3.1
Умножим на .
Этап 7.2.3.2
Умножим на .
Этап 7.2.4
Объединим числители над общим знаменателем.
Этап 7.2.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 7.2.5.1
Перенесем влево от .
Этап 7.2.5.2
Вычтем из .
Этап 7.2.6
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 7.2.6.1
Вынесем множитель из .
Этап 7.2.6.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 7.2.6.2.1
Вынесем множитель из .
Этап 7.2.6.2.2
Сократим общий множитель.
Этап 7.2.6.2.3
Перепишем это выражение.
Этап 7.3
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 7.3.1
Разделим каждый член на .
Этап 7.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 7.3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 7.3.2.1.1
Сократим общий множитель.
Этап 7.3.2.1.2
Разделим на .
Этап 7.3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 7.3.3.1
Умножим числитель на величину, обратную знаменателю.
Этап 7.3.3.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 7.3.3.2.1
Сократим общий множитель.
Этап 7.3.3.2.2
Перепишем это выражение.
Этап 8
Найдем период .
Нажмите для увеличения количества этапов...
Этап 8.1
Период функции можно вычислить по формуле .
Этап 8.2
Заменим на в формуле периода.
Этап 8.3
приблизительно равно . Это положительное число, поэтому вычтем абсолютное значение.
Этап 8.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 8.4.1
Сократим общий множитель.
Этап 8.4.2
Разделим на .
Этап 9
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого