Введите задачу...
Тригонометрия Примеры
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Чтобы избавиться от радикала в левой части уравнения, возведем обе части уравнения в квадрат.
Этап 3
Этап 3.1
С помощью запишем в виде .
Этап 3.2
Упростим левую часть.
Этап 3.2.1
Упростим .
Этап 3.2.1.1
Применим правило умножения к .
Этап 3.2.1.2
Возведем в степень .
Этап 3.2.1.3
Умножим на .
Этап 3.2.1.4
Перемножим экспоненты в .
Этап 3.2.1.4.1
Применим правило степени и перемножим показатели, .
Этап 3.2.1.4.2
Сократим общий множитель .
Этап 3.2.1.4.2.1
Сократим общий множитель.
Этап 3.2.1.4.2.2
Перепишем это выражение.
Этап 3.2.1.5
Упростим.
Этап 3.3
Упростим правую часть.
Этап 3.3.1
Упростим .
Этап 3.3.1.1
Применим правило умножения к .
Этап 3.3.1.2
Возведем в степень .
Этап 3.3.1.3
Умножим на .
Этап 4
Этап 4.1
Перенесем все члены с в левую часть уравнения.
Этап 4.1.1
Вычтем из обеих частей уравнения.
Этап 4.1.2
Вычтем из .
Этап 4.2
Вычтем из обеих частей уравнения.
Этап 4.3
Разделим каждый член на и упростим.
Этап 4.3.1
Разделим каждый член на .
Этап 4.3.2
Упростим левую часть.
Этап 4.3.2.1
Сократим общий множитель .
Этап 4.3.2.1.1
Сократим общий множитель.
Этап 4.3.2.1.2
Разделим на .
Этап 4.3.3
Упростим правую часть.
Этап 4.3.3.1
Деление двух отрицательных значений дает положительное значение.
Этап 4.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 4.5
Упростим .
Этап 4.5.1
Перепишем в виде .
Этап 4.5.2
Упростим знаменатель.
Этап 4.5.2.1
Перепишем в виде .
Этап 4.5.2.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 4.6
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 4.6.1
Сначала с помощью положительного значения найдем первое решение.
Этап 4.6.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 4.6.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 5
Выпишем каждое выражение, чтобы найти решение для .
Этап 6
Этап 6.1
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 6.2
Упростим правую часть.
Этап 6.2.1
Точное значение : .
Этап 6.3
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 6.4
Упростим .
Этап 6.4.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 6.4.2
Объединим дроби.
Этап 6.4.2.1
Объединим и .
Этап 6.4.2.2
Объединим числители над общим знаменателем.
Этап 6.4.3
Упростим числитель.
Этап 6.4.3.1
Перенесем влево от .
Этап 6.4.3.2
Вычтем из .
Этап 6.5
Найдем период .
Этап 6.5.1
Период функции можно вычислить по формуле .
Этап 6.5.2
Заменим на в формуле периода.
Этап 6.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 6.5.4
Разделим на .
Этап 6.6
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Этап 7
Этап 7.1
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 7.2
Упростим правую часть.
Этап 7.2.1
Точное значение : .
Этап 7.3
Функция синуса отрицательна в третьем и четвертом квадрантах. Для нахождения второго решения вычтем решение из , чтобы найти угол приведения. Затем добавим этот угол приведения к и найдем решение в третьем квадранте.
Этап 7.4
Упростим выражение, чтобы найти второе решение.
Этап 7.4.1
Вычтем из .
Этап 7.4.2
Результирующий угол является положительным, меньшим и отличается от на полный оборот.
Этап 7.5
Найдем период .
Этап 7.5.1
Период функции можно вычислить по формуле .
Этап 7.5.2
Заменим на в формуле периода.
Этап 7.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 7.5.4
Разделим на .
Этап 7.6
Добавим к каждому отрицательному углу, чтобы получить положительные углы.
Этап 7.6.1
Добавим к , чтобы найти положительный угол.
Этап 7.6.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 7.6.3
Объединим дроби.
Этап 7.6.3.1
Объединим и .
Этап 7.6.3.2
Объединим числители над общим знаменателем.
Этап 7.6.4
Упростим числитель.
Этап 7.6.4.1
Умножим на .
Этап 7.6.4.2
Вычтем из .
Этап 7.6.5
Перечислим новые углы.
Этап 7.7
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Этап 8
Перечислим все решения.
, для любого целого
Этап 9
Этап 9.1
Объединим и в .
, для любого целого
Этап 9.2
Объединим и в .
, для любого целого
, для любого целого
Этап 10
Исключим решения, которые не делают истинным.
, для любого целого