Введите задачу...
Тригонометрия Примеры
Этап 1
Этап 1.1
Упростим каждый член.
Этап 1.1.1
Применим формулу двойного угла для синуса.
Этап 1.1.2
Вынесем множитель из .
Этап 1.1.3
Применим формулу двойного угла для синуса.
Этап 1.1.4
Умножим на .
Этап 1.1.5
Используем формулу двойного угла для преобразования в .
Этап 1.1.6
Применим свойство дистрибутивности.
Этап 1.1.7
Умножим на .
Этап 1.1.8
Умножим на , сложив экспоненты.
Этап 1.1.8.1
Перенесем .
Этап 1.1.8.2
Умножим на .
Этап 1.1.8.2.1
Возведем в степень .
Этап 1.1.8.2.2
Применим правило степени для объединения показателей.
Этап 1.1.8.3
Добавим и .
Этап 1.1.9
Умножим на .
Этап 1.2
Добавим и .
Этап 2
Этап 2.1
Вынесем множитель из .
Этап 2.2
Вынесем множитель из .
Этап 2.3
Вынесем множитель из .
Этап 3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4
Этап 4.1
Приравняем к .
Этап 4.2
Решим относительно .
Этап 4.2.1
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 4.2.2
Упростим правую часть.
Этап 4.2.2.1
Точное значение : .
Этап 4.2.3
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 4.2.4
Вычтем из .
Этап 4.2.5
Найдем период .
Этап 4.2.5.1
Период функции можно вычислить по формуле .
Этап 4.2.5.2
Заменим на в формуле периода.
Этап 4.2.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 4.2.5.4
Разделим на .
Этап 4.2.6
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
, для любого целого
Этап 5
Этап 5.1
Приравняем к .
Этап 5.2
Решим относительно .
Этап 5.2.1
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
Этап 5.2.2
Упростим правую часть.
Этап 5.2.2.1
Точное значение : .
Этап 5.2.3
Функция косинуса положительна в первом и четвертом квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в четвертом квадранте.
Этап 5.2.4
Упростим .
Этап 5.2.4.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 5.2.4.2
Объединим дроби.
Этап 5.2.4.2.1
Объединим и .
Этап 5.2.4.2.2
Объединим числители над общим знаменателем.
Этап 5.2.4.3
Упростим числитель.
Этап 5.2.4.3.1
Умножим на .
Этап 5.2.4.3.2
Вычтем из .
Этап 5.2.5
Найдем период .
Этап 5.2.5.1
Период функции можно вычислить по формуле .
Этап 5.2.5.2
Заменим на в формуле периода.
Этап 5.2.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 5.2.5.4
Разделим на .
Этап 5.2.6
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
, для любого целого
Этап 6
Этап 6.1
Приравняем к .
Этап 6.2
Решим относительно .
Этап 6.2.1
Вычтем из обеих частей уравнения.
Этап 6.2.2
Разделим каждый член на и упростим.
Этап 6.2.2.1
Разделим каждый член на .
Этап 6.2.2.2
Упростим левую часть.
Этап 6.2.2.2.1
Сократим общий множитель .
Этап 6.2.2.2.1.1
Сократим общий множитель.
Этап 6.2.2.2.1.2
Разделим на .
Этап 6.2.2.3
Упростим правую часть.
Этап 6.2.2.3.1
Деление двух отрицательных значений дает положительное значение.
Этап 6.2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 6.2.4
Упростим .
Этап 6.2.4.1
Перепишем в виде .
Этап 6.2.4.2
Упростим знаменатель.
Этап 6.2.4.2.1
Перепишем в виде .
Этап 6.2.4.2.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 6.2.5
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 6.2.5.1
Сначала с помощью положительного значения найдем первое решение.
Этап 6.2.5.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 6.2.5.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 6.2.6
Выпишем каждое выражение, чтобы найти решение для .
Этап 6.2.7
Решим относительно в .
Этап 6.2.7.1
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 6.2.7.2
Упростим правую часть.
Этап 6.2.7.2.1
Точное значение : .
Этап 6.2.7.3
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 6.2.7.4
Упростим .
Этап 6.2.7.4.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 6.2.7.4.2
Объединим дроби.
Этап 6.2.7.4.2.1
Объединим и .
Этап 6.2.7.4.2.2
Объединим числители над общим знаменателем.
Этап 6.2.7.4.3
Упростим числитель.
Этап 6.2.7.4.3.1
Перенесем влево от .
Этап 6.2.7.4.3.2
Вычтем из .
Этап 6.2.7.5
Найдем период .
Этап 6.2.7.5.1
Период функции можно вычислить по формуле .
Этап 6.2.7.5.2
Заменим на в формуле периода.
Этап 6.2.7.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 6.2.7.5.4
Разделим на .
Этап 6.2.7.6
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Этап 6.2.8
Решим относительно в .
Этап 6.2.8.1
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 6.2.8.2
Упростим правую часть.
Этап 6.2.8.2.1
Точное значение : .
Этап 6.2.8.3
Функция синуса отрицательна в третьем и четвертом квадрантах. Для нахождения второго решения вычтем решение из , чтобы найти угол приведения. Затем добавим этот угол приведения к и найдем решение в третьем квадранте.
Этап 6.2.8.4
Упростим выражение, чтобы найти второе решение.
Этап 6.2.8.4.1
Вычтем из .
Этап 6.2.8.4.2
Результирующий угол является положительным, меньшим и отличается от на полный оборот.
Этап 6.2.8.5
Найдем период .
Этап 6.2.8.5.1
Период функции можно вычислить по формуле .
Этап 6.2.8.5.2
Заменим на в формуле периода.
Этап 6.2.8.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 6.2.8.5.4
Разделим на .
Этап 6.2.8.6
Добавим к каждому отрицательному углу, чтобы получить положительные углы.
Этап 6.2.8.6.1
Добавим к , чтобы найти положительный угол.
Этап 6.2.8.6.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 6.2.8.6.3
Объединим дроби.
Этап 6.2.8.6.3.1
Объединим и .
Этап 6.2.8.6.3.2
Объединим числители над общим знаменателем.
Этап 6.2.8.6.4
Упростим числитель.
Этап 6.2.8.6.4.1
Умножим на .
Этап 6.2.8.6.4.2
Вычтем из .
Этап 6.2.8.6.5
Перечислим новые углы.
Этап 6.2.8.7
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Этап 6.2.9
Перечислим все решения.
, для любого целого
Этап 6.2.10
Объединим решения.
Этап 6.2.10.1
Объединим и в .
, для любого целого
Этап 6.2.10.2
Объединим и в .
, для любого целого
, для любого целого
, для любого целого
, для любого целого
Этап 7
Окончательным решением являются все значения, при которых верно.
, для любого целого
Этап 8
Этап 8.1
Объединим и в .
, для любого целого
Этап 8.2
Объединим и в .
, для любого целого
Этап 8.3
Объединим и в .
, для любого целого
, для любого целого