Введите задачу...
Тригонометрия Примеры
Этап 1
Этап 1.1
Вычтем из обеих частей уравнения.
Этап 1.2
Добавим к обеим частям уравнения.
Этап 2
Заменим на на основе тождества .
Этап 3
Этап 3.1
Применим свойство дистрибутивности.
Этап 3.2
Умножим на .
Этап 3.3
Умножим на .
Этап 4
Вычтем из .
Этап 5
Упорядочим многочлен.
Этап 6
Подставим вместо .
Этап 7
Этап 7.1
Вынесем множитель из .
Этап 7.1.1
Вынесем множитель из .
Этап 7.1.2
Вынесем множитель из .
Этап 7.1.3
Перепишем в виде .
Этап 7.1.4
Вынесем множитель из .
Этап 7.1.5
Вынесем множитель из .
Этап 7.2
Разложим на множители, используя правило полных квадратов.
Этап 7.2.1
Перепишем в виде .
Этап 7.2.2
Перепишем в виде .
Этап 7.2.3
Проверим, чтобы средний член был равен удвоенному произведению корней из первого и третьего членов.
Этап 7.2.4
Перепишем многочлен.
Этап 7.2.5
Разложим на множители, используя правило выделения полного квадрата из квадратного трехчлена , где и .
Этап 8
Этап 8.1
Разделим каждый член на .
Этап 8.2
Упростим левую часть.
Этап 8.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 8.2.2
Разделим на .
Этап 8.3
Упростим правую часть.
Этап 8.3.1
Разделим на .
Этап 9
Приравняем к .
Этап 10
Этап 10.1
Добавим к обеим частям уравнения.
Этап 10.2
Разделим каждый член на и упростим.
Этап 10.2.1
Разделим каждый член на .
Этап 10.2.2
Упростим левую часть.
Этап 10.2.2.1
Сократим общий множитель .
Этап 10.2.2.1.1
Сократим общий множитель.
Этап 10.2.2.1.2
Разделим на .
Этап 11
Подставим вместо .
Этап 12
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
Этап 13
Этап 13.1
Точное значение : .
Этап 14
Функция косинуса положительна в первом и четвертом квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в четвертом квадранте.
Этап 15
Этап 15.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 15.2
Объединим дроби.
Этап 15.2.1
Объединим и .
Этап 15.2.2
Объединим числители над общим знаменателем.
Этап 15.3
Упростим числитель.
Этап 15.3.1
Умножим на .
Этап 15.3.2
Вычтем из .
Этап 16
Этап 16.1
Период функции можно вычислить по формуле .
Этап 16.2
Заменим на в формуле периода.
Этап 16.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 16.4
Разделим на .
Этап 17
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого