Тригонометрия Примеры

Этап 1
Возьмем обратный котангенс обеих частей уравнения, чтобы извлечь из котангенса.
Этап 2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.1
Точное значение : .
Этап 3
Умножим обе части уравнения на .
Этап 4
Упростим обе части уравнения.
Нажмите для увеличения количества этапов...
Этап 4.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.1.1.1
Сократим общий множитель.
Этап 4.1.1.2
Перепишем это выражение.
Этап 4.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.2.1.1
Вынесем множитель из .
Этап 4.2.1.2
Сократим общий множитель.
Этап 4.2.1.3
Перепишем это выражение.
Этап 5
The cotangent function is negative in the second and fourth quadrants. To find the second solution, subtract the reference angle from to find the solution in the third quadrant.
Этап 6
Упростим выражение, чтобы найти второе решение.
Нажмите для увеличения количества этапов...
Этап 6.1
Добавим к .
Этап 6.2
Результирующий угол является положительным и отличается от на полный оборот.
Этап 6.3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.3.1
Умножим обе части уравнения на .
Этап 6.3.2
Упростим обе части уравнения.
Нажмите для увеличения количества этапов...
Этап 6.3.2.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.3.2.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.3.2.1.1.1
Сократим общий множитель.
Этап 6.3.2.1.1.2
Перепишем это выражение.
Этап 6.3.2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 6.3.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.3.2.2.1.1
Вынесем множитель из .
Этап 6.3.2.2.1.2
Сократим общий множитель.
Этап 6.3.2.2.1.3
Перепишем это выражение.
Этап 7
Найдем период .
Нажмите для увеличения количества этапов...
Этап 7.1
Период функции можно вычислить по формуле .
Этап 7.2
Заменим на в формуле периода.
Этап 7.3
приблизительно равно . Это положительное число, поэтому вычтем абсолютное значение.
Этап 7.4
Умножим числитель на величину, обратную знаменателю.
Этап 7.5
Перенесем влево от .
Этап 8
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
Этап 9
Объединим ответы.
, для любого целого