Тригонометрия Примеры

Этап 1
Добавим к обеим частям уравнения.
Этап 2
Применим обратный косеканс к обеим частям уравнения, чтобы извлечь из-под знака косеканса.
Этап 3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.1
Точное значение : .
Этап 4
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 4.1
Разделим каждый член на .
Этап 4.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.2.1.1
Сократим общий множитель.
Этап 4.2.1.2
Разделим на .
Этап 4.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Умножим числитель на величину, обратную знаменателю.
Этап 4.3.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 4.3.2.1
Умножим на .
Этап 4.3.2.2
Умножим на .
Этап 5
Функция косеканса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 6
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.1
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.1.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 6.1.2
Объединим и .
Этап 6.1.3
Объединим числители над общим знаменателем.
Этап 6.1.4
Вычтем из .
Нажмите для увеличения количества этапов...
Этап 6.1.4.1
Изменим порядок и .
Этап 6.1.4.2
Вычтем из .
Этап 6.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Разделим каждый член на .
Этап 6.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.2.2.1.1
Сократим общий множитель.
Этап 6.2.2.1.2
Разделим на .
Этап 6.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 6.2.3.1
Умножим числитель на величину, обратную знаменателю.
Этап 6.2.3.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 6.2.3.2.1
Умножим на .
Этап 6.2.3.2.2
Умножим на .
Этап 7
Найдем период .
Нажмите для увеличения количества этапов...
Этап 7.1
Период функции можно вычислить по формуле .
Этап 7.2
Заменим на в формуле периода.
Этап 7.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 7.4
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 7.4.1
Вынесем множитель из .
Этап 7.4.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 7.4.2.1
Вынесем множитель из .
Этап 7.4.2.2
Сократим общий множитель.
Этап 7.4.2.3
Перепишем это выражение.
Этап 8
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого