Введите задачу...
Тригонометрия Примеры
Этап 1
Разделим каждый член уравнения на .
Этап 2
Разделим дроби.
Этап 3
Переведем в .
Этап 4
Разделим на .
Этап 5
Этап 5.1
Сократим общий множитель.
Этап 5.2
Перепишем это выражение.
Этап 6
Этап 6.1
Разделим каждый член на .
Этап 6.2
Упростим левую часть.
Этап 6.2.1
Сократим общий множитель .
Этап 6.2.1.1
Сократим общий множитель.
Этап 6.2.1.2
Разделим на .
Этап 6.3
Упростим правую часть.
Этап 6.3.1
Умножим на .
Этап 6.3.2
Объединим и упростим знаменатель.
Этап 6.3.2.1
Умножим на .
Этап 6.3.2.2
Возведем в степень .
Этап 6.3.2.3
Возведем в степень .
Этап 6.3.2.4
Применим правило степени для объединения показателей.
Этап 6.3.2.5
Добавим и .
Этап 6.3.2.6
Перепишем в виде .
Этап 6.3.2.6.1
С помощью запишем в виде .
Этап 6.3.2.6.2
Применим правило степени и перемножим показатели, .
Этап 6.3.2.6.3
Объединим и .
Этап 6.3.2.6.4
Сократим общий множитель .
Этап 6.3.2.6.4.1
Сократим общий множитель.
Этап 6.3.2.6.4.2
Перепишем это выражение.
Этап 6.3.2.6.5
Найдем экспоненту.
Этап 7
Возьмем обратный тангенс обеих частей уравнения, чтобы извлечь из тангенса.
Этап 8
Этап 8.1
Точное значение : .
Этап 9
Функция тангенса положительна в первом и третьем квадрантах. Для нахождения второго решения прибавим угол приведения из и найдем решение в четвертом квадранте.
Этап 10
Этап 10.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 10.2
Объединим дроби.
Этап 10.2.1
Объединим и .
Этап 10.2.2
Объединим числители над общим знаменателем.
Этап 10.3
Упростим числитель.
Этап 10.3.1
Перенесем влево от .
Этап 10.3.2
Добавим и .
Этап 11
Этап 11.1
Период функции можно вычислить по формуле .
Этап 11.2
Заменим на в формуле периода.
Этап 11.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 11.4
Разделим на .
Этап 12
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
Этап 13
Объединим ответы.
, для любого целого