Тригонометрия Примеры

Этап 1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 2
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.1
Перепишем в виде .
Этап 2.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 2.3
Плюс или минус равно .
Этап 3
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
Этап 4
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.1
Точное значение : .
Этап 5
Добавим к обеим частям уравнения.
Этап 6
Функция косинуса положительна в первом и четвертом квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в четвертом квадранте.
Этап 7
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 7.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 7.1.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 7.1.2
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 7.1.2.1
Объединим и .
Этап 7.1.2.2
Объединим числители над общим знаменателем.
Этап 7.1.3
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 7.1.3.1
Умножим на .
Этап 7.1.3.2
Вычтем из .
Этап 7.2
Добавим к обеим частям уравнения.
Этап 8
Найдем период .
Нажмите для увеличения количества этапов...
Этап 8.1
Период функции можно вычислить по формуле .
Этап 8.2
Заменим на в формуле периода.
Этап 8.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 8.4
Разделим на .
Этап 9
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
Этап 10
Объединим ответы.
, для любого целого