Тригонометрия Примеры

Этап 1
Используем тождество для решения уравнения. В этом тождестве представляет угол, образованный при нанесении точки на график, поэтому его можно найти с помощью .
, где и
Этап 2
Преобразуем уравнение, чтобы найти значение .
Этап 3
Возьмем обратный тангенс, чтобы решить уравнение относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Разделим на .
Этап 3.2
Точное значение : .
Этап 4
Решим, чтобы найти значение .
Нажмите для увеличения количества этапов...
Этап 4.1
Возведем в степень .
Этап 4.2
Единица в любой степени равна единице.
Этап 4.3
Добавим и .
Этап 5
Подставим известные значения в уравнение.
Этап 6
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 6.1
Разделим каждый член на .
Этап 6.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.2.1.1
Сократим общий множитель.
Этап 6.2.1.2
Разделим на .
Этап 6.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 6.3.1
Умножим на .
Этап 6.3.2
Объединим и упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 6.3.2.1
Умножим на .
Этап 6.3.2.2
Возведем в степень .
Этап 6.3.2.3
Возведем в степень .
Этап 6.3.2.4
Применим правило степени для объединения показателей.
Этап 6.3.2.5
Добавим и .
Этап 6.3.2.6
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 6.3.2.6.1
С помощью запишем в виде .
Этап 6.3.2.6.2
Применим правило степени и перемножим показатели, .
Этап 6.3.2.6.3
Объединим и .
Этап 6.3.2.6.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.3.2.6.4.1
Сократим общий множитель.
Этап 6.3.2.6.4.2
Перепишем это выражение.
Этап 6.3.2.6.5
Найдем экспоненту.
Этап 7
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 8
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 8.1
Точное значение : .
Этап 9
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 9.1
Добавим к обеим частям уравнения.
Этап 9.2
Объединим числители над общим знаменателем.
Этап 9.3
Добавим и .
Этап 9.4
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 9.4.1
Вынесем множитель из .
Этап 9.4.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 9.4.2.1
Вынесем множитель из .
Этап 9.4.2.2
Сократим общий множитель.
Этап 9.4.2.3
Перепишем это выражение.
Этап 10
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 11
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 11.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 11.1.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 11.1.2
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 11.1.2.1
Объединим и .
Этап 11.1.2.2
Объединим числители над общим знаменателем.
Этап 11.1.3
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 11.1.3.1
Перенесем влево от .
Этап 11.1.3.2
Вычтем из .
Этап 11.2
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 11.2.1
Добавим к обеим частям уравнения.
Этап 11.2.2
Объединим числители над общим знаменателем.
Этап 11.2.3
Добавим и .
Этап 11.2.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 11.2.4.1
Сократим общий множитель.
Этап 11.2.4.2
Разделим на .
Этап 12
Найдем период .
Нажмите для увеличения количества этапов...
Этап 12.1
Период функции можно вычислить по формуле .
Этап 12.2
Заменим на в формуле периода.
Этап 12.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 12.4
Разделим на .
Этап 13
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
Этап 14
Исключим решения, которые не делают истинным.
Нет решения