Введите задачу...
Тригонометрия Примеры
,
Этап 1
The cotangent function is negative in the second and fourth quadrants. The cosecant function is positive in the first and second quadrants. The set of solutions for are limited to the second quadrant since that is the only quadrant found in both sets.
Решение находится во втором квадранте.
Этап 2
Воспользуемся определением косеканса, чтобы найти известные стороны прямоугольного треугольника, вписанного в единичную окружность. Квадрант определяет знак каждого значения.
Этап 3
Найдем прилежащую сторону треугольника в единичной окружности. Поскольку гипотенуза и противолежащая сторона известны, используем теорему Пифагора, чтобы найти оставшуюся сторону.
Этап 4
Заменим известные значения в уравнении.
Этап 5
Этап 5.1
Изменим знак на противоположный.
Смежный
Этап 5.2
Возведем в степень .
Смежный
Этап 5.3
Единица в любой степени равна единице.
Смежный
Этап 5.4
Умножим на .
Смежный
Этап 5.5
Вычтем из .
Смежный
Смежный
Этап 6
Этап 6.1
Воспользуемся определением синуса, чтобы найти значение .
Этап 6.2
Подставим известные значения.
Этап 7
Этап 7.1
Воспользуемся определением косинуса, чтобы найти значение .
Этап 7.2
Подставим известные значения.
Этап 7.3
Вынесем знак минуса перед дробью.
Этап 8
Этап 8.1
Воспользуемся определением тангенса, чтобы найти значение .
Этап 8.2
Подставим известные значения.
Этап 8.3
Упростим значение .
Этап 8.3.1
Сократим общий множитель и .
Этап 8.3.1.1
Перепишем в виде .
Этап 8.3.1.2
Вынесем знак минуса перед дробью.
Этап 8.3.2
Умножим на .
Этап 8.3.3
Объединим и упростим знаменатель.
Этап 8.3.3.1
Умножим на .
Этап 8.3.3.2
Возведем в степень .
Этап 8.3.3.3
Возведем в степень .
Этап 8.3.3.4
Применим правило степени для объединения показателей.
Этап 8.3.3.5
Добавим и .
Этап 8.3.3.6
Перепишем в виде .
Этап 8.3.3.6.1
С помощью запишем в виде .
Этап 8.3.3.6.2
Применим правило степени и перемножим показатели, .
Этап 8.3.3.6.3
Объединим и .
Этап 8.3.3.6.4
Сократим общий множитель .
Этап 8.3.3.6.4.1
Сократим общий множитель.
Этап 8.3.3.6.4.2
Перепишем это выражение.
Этап 8.3.3.6.5
Найдем экспоненту.
Этап 9
Этап 9.1
Воспользуемся определением котангенса, чтобы найти значение .
Этап 9.2
Подставим известные значения.
Этап 9.3
Разделим на .
Этап 10
Этап 10.1
Воспользуемся определением секанса, чтобы найти значение .
Этап 10.2
Подставим известные значения.
Этап 10.3
Упростим значение .
Этап 10.3.1
Вынесем знак минуса перед дробью.
Этап 10.3.2
Умножим на .
Этап 10.3.3
Объединим и упростим знаменатель.
Этап 10.3.3.1
Умножим на .
Этап 10.3.3.2
Возведем в степень .
Этап 10.3.3.3
Возведем в степень .
Этап 10.3.3.4
Применим правило степени для объединения показателей.
Этап 10.3.3.5
Добавим и .
Этап 10.3.3.6
Перепишем в виде .
Этап 10.3.3.6.1
С помощью запишем в виде .
Этап 10.3.3.6.2
Применим правило степени и перемножим показатели, .
Этап 10.3.3.6.3
Объединим и .
Этап 10.3.3.6.4
Сократим общий множитель .
Этап 10.3.3.6.4.1
Сократим общий множитель.
Этап 10.3.3.6.4.2
Перепишем это выражение.
Этап 10.3.3.6.5
Найдем экспоненту.
Этап 11
Это решение для каждого тригонометрического значения.