Введите задачу...
Тригонометрия Примеры
,
Этап 1
The sine function is positive in the first and second quadrants. The tangent function is positive in the first and third quadrants. The set of solutions for are limited to the first quadrant since that is the only quadrant found in both sets.
Решение находится в первом квадранте.
Этап 2
Воспользуемся определением тангенса, чтобы найти известные стороны прямоугольного треугольника, вписанного в единичную окружность. Квадрант определяет знак каждого значения.
Этап 3
Найдем гипотенузу треугольника в единичной окружности. Поскольку известны противолежащая и прилежащая стороны, используем теорему Пифагора, чтобы найти оставшуюся сторону.
Этап 4
Заменим известные значения в уравнении.
Этап 5
Этап 5.1
Возведем в степень .
Гипотенуза
Этап 5.2
Возведем в степень .
Гипотенуза
Этап 5.3
Добавим и .
Гипотенуза
Этап 5.4
Перепишем в виде .
Гипотенуза
Этап 5.5
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Гипотенуза
Гипотенуза
Этап 6
Этап 6.1
Воспользуемся определением синуса, чтобы найти значение .
Этап 6.2
Подставим известные значения.
Этап 7
Этап 7.1
Воспользуемся определением косинуса, чтобы найти значение .
Этап 7.2
Подставим известные значения.
Этап 8
Этап 8.1
Воспользуемся определением котангенса, чтобы найти значение .
Этап 8.2
Подставим известные значения.
Этап 9
Этап 9.1
Воспользуемся определением секанса, чтобы найти значение .
Этап 9.2
Подставим известные значения.
Этап 10
Этап 10.1
Воспользуемся определением косеканса, чтобы найти значение .
Этап 10.2
Подставим известные значения.
Этап 11
Это решение для каждого тригонометрического значения.