Введите задачу...
Тригонометрия Примеры
,
Этап 1
The cotangent function is positive in the first and third quadrants. The secant function is negative in the second and third quadrants. The set of solutions for are limited to the third quadrant since that is the only quadrant found in both sets.
Решение находится в третьем квадранте.
Этап 2
Воспользуемся определением секанса, чтобы найти известные стороны прямоугольного треугольника, вписанного в единичную окружность. Квадрант определяет знак каждого значения.
Этап 3
Найдем противолежащую сторону треугольника в единичной окружности. Поскольку прилежащая сторона и гипотенуза известны, используем теорему Пифагора, чтобы найти оставшуюся сторону.
Этап 4
Заменим известные значения в уравнении.
Этап 5
Этап 5.1
Изменим знак на противоположный.
Противоположный
Этап 5.2
Перепишем в виде .
Этап 5.2.1
С помощью запишем в виде .
Противоположный
Этап 5.2.2
Применим правило степени и перемножим показатели, .
Противоположный
Этап 5.2.3
Объединим и .
Противоположный
Этап 5.2.4
Сократим общий множитель .
Этап 5.2.4.1
Сократим общий множитель.
Противоположный
Этап 5.2.4.2
Перепишем это выражение.
Противоположный
Противоположный
Этап 5.2.5
Найдем экспоненту.
Противоположный
Противоположный
Этап 5.3
Умножим на , сложив экспоненты.
Этап 5.3.1
Умножим на .
Этап 5.3.1.1
Возведем в степень .
Противоположный
Этап 5.3.1.2
Применим правило степени для объединения показателей.
Противоположный
Противоположный
Этап 5.3.2
Добавим и .
Противоположный
Противоположный
Этап 5.4
Возведем в степень .
Противоположный
Этап 5.5
Вычтем из .
Противоположный
Этап 5.6
Перепишем в виде .
Противоположный
Этап 5.7
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Противоположный
Этап 5.8
Умножим на .
Противоположный
Противоположный
Этап 6
Этап 6.1
Воспользуемся определением синуса, чтобы найти значение .
Этап 6.2
Подставим известные значения.
Этап 6.3
Упростим значение .
Этап 6.3.1
Вынесем знак минуса перед дробью.
Этап 6.3.2
Умножим на .
Этап 6.3.3
Объединим и упростим знаменатель.
Этап 6.3.3.1
Умножим на .
Этап 6.3.3.2
Возведем в степень .
Этап 6.3.3.3
Возведем в степень .
Этап 6.3.3.4
Применим правило степени для объединения показателей.
Этап 6.3.3.5
Добавим и .
Этап 6.3.3.6
Перепишем в виде .
Этап 6.3.3.6.1
С помощью запишем в виде .
Этап 6.3.3.6.2
Применим правило степени и перемножим показатели, .
Этап 6.3.3.6.3
Объединим и .
Этап 6.3.3.6.4
Сократим общий множитель .
Этап 6.3.3.6.4.1
Сократим общий множитель.
Этап 6.3.3.6.4.2
Перепишем это выражение.
Этап 6.3.3.6.5
Найдем экспоненту.
Этап 7
Этап 7.1
Воспользуемся определением косинуса, чтобы найти значение .
Этап 7.2
Подставим известные значения.
Этап 7.3
Упростим значение .
Этап 7.3.1
Вынесем знак минуса перед дробью.
Этап 7.3.2
Умножим на .
Этап 7.3.3
Объединим и упростим знаменатель.
Этап 7.3.3.1
Умножим на .
Этап 7.3.3.2
Возведем в степень .
Этап 7.3.3.3
Возведем в степень .
Этап 7.3.3.4
Применим правило степени для объединения показателей.
Этап 7.3.3.5
Добавим и .
Этап 7.3.3.6
Перепишем в виде .
Этап 7.3.3.6.1
С помощью запишем в виде .
Этап 7.3.3.6.2
Применим правило степени и перемножим показатели, .
Этап 7.3.3.6.3
Объединим и .
Этап 7.3.3.6.4
Сократим общий множитель .
Этап 7.3.3.6.4.1
Сократим общий множитель.
Этап 7.3.3.6.4.2
Перепишем это выражение.
Этап 7.3.3.6.5
Найдем экспоненту.
Этап 8
Этап 8.1
Воспользуемся определением тангенса, чтобы найти значение .
Этап 8.2
Подставим известные значения.
Этап 8.3
Разделим на .
Этап 9
Этап 9.1
Воспользуемся определением котангенса, чтобы найти значение .
Этап 9.2
Подставим известные значения.
Этап 9.3
Деление двух отрицательных значений дает положительное значение.
Этап 10
Этап 10.1
Воспользуемся определением косеканса, чтобы найти значение .
Этап 10.2
Подставим известные значения.
Этап 10.3
Вынесем знак минуса перед дробью.
Этап 11
Это решение для каждого тригонометрического значения.