Тригонометрия Примеры

Risolvere per x in Gradi cos(2x)=1/2
Этап 1
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
Этап 2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.1
Точное значение : .
Этап 3
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.1
Разделим каждый член на .
Этап 3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Сократим общий множитель.
Этап 3.2.1.2
Разделим на .
Этап 3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Разделим на .
Этап 4
Функция косинуса положительна в первом и четвертом квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в четвертом квадранте.
Этап 5
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1
Вычтем из .
Этап 5.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Разделим каждый член на .
Этап 5.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.2.2.1.1
Сократим общий множитель.
Этап 5.2.2.1.2
Разделим на .
Этап 5.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.2.3.1
Разделим на .
Этап 6
Найдем период .
Нажмите для увеличения количества этапов...
Этап 6.1
Период функции можно вычислить по формуле .
Этап 6.2
Заменим на в формуле периода.
Этап 6.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 6.4
Разделим на .
Этап 7
Период функции равен . Поэтому значения повторяются через каждые град. в обоих направлениях.
, для любого целого