Тригонометрия Примеры

Risolvere per θ in Gradi 9sec(theta)^2tan(theta)=12tan(theta)
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 2.1
Вынесем множитель из .
Этап 2.2
Вынесем множитель из .
Этап 2.3
Вынесем множитель из .
Этап 3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.1
Приравняем к .
Этап 4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.2.1
Возьмем обратный тангенс обеих частей уравнения, чтобы извлечь из тангенса.
Этап 4.2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Точное значение : .
Этап 4.2.3
Функция тангенса положительна в первом и третьем квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение в четвертом квадранте.
Этап 4.2.4
Добавим и .
Этап 4.2.5
Найдем период .
Нажмите для увеличения количества этапов...
Этап 4.2.5.1
Период функции можно вычислить по формуле .
Этап 4.2.5.2
Заменим на в формуле периода.
Этап 4.2.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 4.2.5.4
Разделим на .
Этап 4.2.6
Период функции равен . Поэтому значения повторяются через каждые град. в обоих направлениях.
, для любого целого
, для любого целого
, для любого целого
Этап 5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1
Приравняем к .
Этап 5.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.2.1
Добавим к обеим частям уравнения.
Этап 5.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 5.2.2.1
Разделим каждый член на .
Этап 5.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.2.2.2.1.1
Сократим общий множитель.
Этап 5.2.2.2.1.2
Разделим на .
Этап 5.2.3
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 5.2.4
Упростим .
Нажмите для увеличения количества этапов...
Этап 5.2.4.1
Перепишем в виде .
Этап 5.2.4.2
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 5.2.4.2.1
Перепишем в виде .
Этап 5.2.4.2.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 5.2.4.3
Умножим на .
Этап 5.2.4.4
Объединим и упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 5.2.4.4.1
Умножим на .
Этап 5.2.4.4.2
Возведем в степень .
Этап 5.2.4.4.3
Возведем в степень .
Этап 5.2.4.4.4
Применим правило степени для объединения показателей.
Этап 5.2.4.4.5
Добавим и .
Этап 5.2.4.4.6
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 5.2.4.4.6.1
С помощью запишем в виде .
Этап 5.2.4.4.6.2
Применим правило степени и перемножим показатели, .
Этап 5.2.4.4.6.3
Объединим и .
Этап 5.2.4.4.6.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.2.4.4.6.4.1
Сократим общий множитель.
Этап 5.2.4.4.6.4.2
Перепишем это выражение.
Этап 5.2.4.4.6.5
Найдем экспоненту.
Этап 5.2.5
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 5.2.5.1
Сначала с помощью положительного значения найдем первое решение.
Этап 5.2.5.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 5.2.5.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 5.2.6
Выпишем каждое выражение, чтобы найти решение для .
Этап 5.2.7
Решим относительно в .
Нажмите для увеличения количества этапов...
Этап 5.2.7.1
Применим обратный секанс к обеим частям уравнения, чтобы извлечь из-под знака секанса.
Этап 5.2.7.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.2.7.2.1
Точное значение : .
Этап 5.2.7.3
Функция секанса положительна в первом и четвертом квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в четвертом квадранте.
Этап 5.2.7.4
Вычтем из .
Этап 5.2.7.5
Найдем период .
Нажмите для увеличения количества этапов...
Этап 5.2.7.5.1
Период функции можно вычислить по формуле .
Этап 5.2.7.5.2
Заменим на в формуле периода.
Этап 5.2.7.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 5.2.7.5.4
Разделим на .
Этап 5.2.7.6
Период функции равен . Поэтому значения повторяются через каждые град. в обоих направлениях.
, для любого целого
, для любого целого
Этап 5.2.8
Решим относительно в .
Нажмите для увеличения количества этапов...
Этап 5.2.8.1
Применим обратный секанс к обеим частям уравнения, чтобы извлечь из-под знака секанса.
Этап 5.2.8.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.2.8.2.1
Точное значение : .
Этап 5.2.8.3
Функция секанса отрицательна во втором и третьем квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в третьем квадранте.
Этап 5.2.8.4
Вычтем из .
Этап 5.2.8.5
Найдем период .
Нажмите для увеличения количества этапов...
Этап 5.2.8.5.1
Период функции можно вычислить по формуле .
Этап 5.2.8.5.2
Заменим на в формуле периода.
Этап 5.2.8.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 5.2.8.5.4
Разделим на .
Этап 5.2.8.6
Период функции равен . Поэтому значения повторяются через каждые град. в обоих направлениях.
, для любого целого
, для любого целого
Этап 5.2.9
Перечислим все решения.
, для любого целого
Этап 5.2.10
Объединим решения.
Нажмите для увеличения количества этапов...
Этап 5.2.10.1
Объединим и в .
, для любого целого
Этап 5.2.10.2
Объединим и в .
, для любого целого
, для любого целого
, для любого целого
, для любого целого
Этап 6
Окончательным решением являются все значения, при которых верно.
, для любого целого
Этап 7
Объединим и в .
, для любого целого