Основы мат. анализа Примеры

Найти асимптоты f(x)=(x^2+4x)/(-x-4)
Этап 1
Найдем, где выражение не определено.
Этап 2
Вертикальные асимптоты находятся в точках бесконечного разрыва непрерывности.
Нет вертикальных асимптот
Этап 3
Рассмотрим рациональную функцию , где  — степень числителя, а  — степень знаменателя.
1. Если , тогда ось x, , служит горизонтальной асимптотой.
2. Если , тогда горизонтальной асимптотой служит линия .
3. Если , тогда нет горизонтальной асимптоты (есть наклонная асимптота).
Этап 4
Найдем и .
Этап 5
Поскольку , горизонтальная асимптота отсутствует.
Нет горизонтальных асимптот
Этап 6
Найдем наклонную асимптоту, используя деление многочленов.
Нажмите для увеличения количества этапов...
Этап 6.1
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 6.1.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 6.1.1.1
Вынесем множитель из .
Этап 6.1.1.2
Вынесем множитель из .
Этап 6.1.1.3
Вынесем множитель из .
Этап 6.1.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 6.1.2.1
Вынесем множитель из .
Этап 6.1.2.2
Перепишем в виде .
Этап 6.1.2.3
Вынесем множитель из .
Этап 6.1.2.4
Сократим общий множитель.
Этап 6.1.2.5
Разделим на .
Этап 6.1.3
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 6.1.3.1
Перенесем влево от .
Этап 6.1.3.2
Перепишем в виде .
Этап 6.2
Так как при делении многочленов нет полиномиальной части, наклонные асимптоты отсутствуют.
Нет наклонных асимптот
Нет наклонных асимптот
Этап 7
Это множество всех асимптот.
Нет вертикальных асимптот
Нет горизонтальных асимптот
Нет наклонных асимптот
Этап 8