Основы мат. анализа Примеры

Найти эксцентриситет ((x+3)^2)/7+((y-4)^2)/16=1
Этап 1
Упростим каждый член уравнения, чтобы правая часть была равна . Стандартная форма уравнения эллипса или гиперболы требует, чтобы правая часть уравнения была равна .
Этап 2
Это формула эллипса. Используем эту формулу для определения центра, большой и малой осей эллипса.
Этап 3
Сопоставим параметры эллипса со значениями в стандартной форме. Переменная представляет большую ось эллипса,  — малую ось,  — сдвиг по оси X от начала координат, а  — сдвиг по оси Y от начала координат.
Этап 4
Найдем эксцентриситет по приведенной ниже формуле.
Этап 5
Подставим значения и в формулу.
Этап 6
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 6.1
Возведем в степень .
Этап 6.2
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 6.2.1
С помощью запишем в виде .
Этап 6.2.2
Применим правило степени и перемножим показатели, .
Этап 6.2.3
Объединим и .
Этап 6.2.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.2.4.1
Сократим общий множитель.
Этап 6.2.4.2
Перепишем это выражение.
Этап 6.2.5
Найдем экспоненту.
Этап 6.3
Умножим на .
Этап 6.4
Вычтем из .
Этап 6.5
Перепишем в виде .
Этап 6.6
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 7