Введите задачу...
Основы мат. анализа Примеры
Этап 1
Этап 1.1
Разложим дробь на множители.
Этап 1.1.1
Вынесем наибольший общий делитель из каждой группы.
Этап 1.1.1.1
Сгруппируем первые два члена и последние два члена.
Этап 1.1.1.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 1.1.2
Разложим многочлен, вынеся наибольший общий делитель .
Этап 1.2
Для каждого множителя в знаменателе создадим новую дробь, используя множитель в качестве знаменателя, а неизвестное значение — в качестве числителя. Поскольку множитель в знаменателе линейный, поместим одну переменную на его место .
Этап 1.3
Для каждого множителя в знаменателе создадим новую дробь, используя множитель в качестве знаменателя, а неизвестное значение — в качестве числителя. Поскольку у множителя 2-й порядок, в числителе должно быть членов. Количество необходимых членов в числителе всегда равно порядку множителя в знаменателе.
Этап 1.4
Умножим каждую дробь в уравнении на знаменатель исходного выражения. В этом случае знаменатель равен .
Этап 1.5
Сократим общий множитель .
Этап 1.5.1
Сократим общий множитель.
Этап 1.5.2
Перепишем это выражение.
Этап 1.6
Сократим общий множитель .
Этап 1.6.1
Сократим общий множитель.
Этап 1.6.2
Разделим на .
Этап 1.7
Упростим каждый член.
Этап 1.7.1
Сократим общий множитель .
Этап 1.7.1.1
Сократим общий множитель.
Этап 1.7.1.2
Разделим на .
Этап 1.7.2
Применим свойство дистрибутивности.
Этап 1.7.3
Перенесем влево от .
Этап 1.7.4
Сократим общий множитель .
Этап 1.7.4.1
Сократим общий множитель.
Этап 1.7.4.2
Разделим на .
Этап 1.7.5
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 1.7.5.1
Применим свойство дистрибутивности.
Этап 1.7.5.2
Применим свойство дистрибутивности.
Этап 1.7.5.3
Применим свойство дистрибутивности.
Этап 1.7.6
Упростим каждый член.
Этап 1.7.6.1
Умножим на , сложив экспоненты.
Этап 1.7.6.1.1
Перенесем .
Этап 1.7.6.1.2
Умножим на .
Этап 1.7.6.2
Перенесем влево от .
Этап 1.7.6.3
Перепишем в виде .
Этап 1.7.6.4
Перенесем влево от .
Этап 1.7.6.5
Перепишем в виде .
Этап 1.8
Упростим выражение.
Этап 1.8.1
Перенесем .
Этап 1.8.2
Перенесем .
Этап 2
Этап 2.1
Составим уравнение для переменных элементарной дроби, приравняв коэффициенты из каждой части уравнения. Чтобы уравнение было верным, эквивалентные коэффициенты в каждой части уравнения должны быть равны.
Этап 2.2
Составим уравнение для переменных элементарной дроби, приравняв коэффициенты из каждой части уравнения. Чтобы уравнение было верным, эквивалентные коэффициенты в каждой части уравнения должны быть равны.
Этап 2.3
Составим уравнение для переменных элементарной дроби, приравняв коэффициенты членов, не содержащих . Чтобы уравнение было верным, эквивалентные коэффициенты в каждой части уравнения должны быть равны.
Этап 2.4
Составим систему уравнений, чтобы найти коэффициенты элементарных дробей.
Этап 3
Этап 3.1
Решим относительно в .
Этап 3.1.1
Перепишем уравнение в виде .
Этап 3.1.2
Вычтем из обеих частей уравнения.
Этап 3.2
Заменим все вхождения на во всех уравнениях.
Этап 3.2.1
Заменим все вхождения в на .
Этап 3.2.2
Упростим правую часть.
Этап 3.2.2.1
Упростим каждый член.
Этап 3.2.2.1.1
Применим свойство дистрибутивности.
Этап 3.2.2.1.2
Умножим на .
Этап 3.2.2.1.3
Умножим на .
Этап 3.2.2.1.4
Перепишем в виде .
Этап 3.3
Изменим порядок и .
Этап 3.4
Решим относительно в .
Этап 3.4.1
Перепишем уравнение в виде .
Этап 3.4.2
Вычтем из обеих частей уравнения.
Этап 3.4.3
Разделим каждый член на и упростим.
Этап 3.4.3.1
Разделим каждый член на .
Этап 3.4.3.2
Упростим левую часть.
Этап 3.4.3.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 3.4.3.2.2
Разделим на .
Этап 3.4.3.3
Упростим правую часть.
Этап 3.4.3.3.1
Упростим каждый член.
Этап 3.4.3.3.1.1
Вынесем знак минуса из знаменателя .
Этап 3.4.3.3.1.2
Перепишем в виде .
Этап 3.4.3.3.1.3
Разделим на .
Этап 3.5
Заменим все вхождения на во всех уравнениях.
Этап 3.5.1
Заменим все вхождения в на .
Этап 3.5.2
Упростим правую часть.
Этап 3.5.2.1
Упростим .
Этап 3.5.2.1.1
Упростим каждый член.
Этап 3.5.2.1.1.1
Применим свойство дистрибутивности.
Этап 3.5.2.1.1.2
Умножим на .
Этап 3.5.2.1.1.3
Умножим на .
Этап 3.5.2.1.2
Объединим противоположные члены в .
Этап 3.5.2.1.2.1
Вычтем из .
Этап 3.5.2.1.2.2
Добавим и .
Этап 3.5.3
Заменим все вхождения в на .
Этап 3.5.4
Упростим правую часть.
Этап 3.5.4.1
Упростим каждый член.
Этап 3.5.4.1.1
Применим свойство дистрибутивности.
Этап 3.5.4.1.2
Умножим .
Этап 3.5.4.1.2.1
Умножим на .
Этап 3.5.4.1.2.2
Умножим на .
Этап 3.5.4.1.3
Умножим на .
Этап 3.6
Решим относительно в .
Этап 3.6.1
Перепишем уравнение в виде .
Этап 3.6.2
Перенесем все члены без в правую часть уравнения.
Этап 3.6.2.1
Добавим к обеим частям уравнения.
Этап 3.6.2.2
Вычтем из обеих частей уравнения.
Этап 3.6.2.3
Добавим и .
Этап 3.7
Заменим все вхождения на во всех уравнениях.
Этап 3.7.1
Заменим все вхождения в на .
Этап 3.7.2
Упростим правую часть.
Этап 3.7.2.1
Упростим .
Этап 3.7.2.1.1
Упростим каждый член.
Этап 3.7.2.1.1.1
Применим свойство дистрибутивности.
Этап 3.7.2.1.1.2
Умножим на .
Этап 3.7.2.1.1.3
Умножим на .
Этап 3.7.2.1.2
Вычтем из .
Этап 3.7.3
Заменим все вхождения в на .
Этап 3.7.4
Упростим правую часть.
Этап 3.7.4.1
Упростим .
Этап 3.7.4.1.1
Упростим каждый член.
Этап 3.7.4.1.1.1
Применим свойство дистрибутивности.
Этап 3.7.4.1.1.2
Умножим на .
Этап 3.7.4.1.1.3
Умножим .
Этап 3.7.4.1.1.3.1
Умножим на .
Этап 3.7.4.1.1.3.2
Умножим на .
Этап 3.7.4.1.2
Добавим и .
Этап 3.8
Решим относительно в .
Этап 3.8.1
Перепишем уравнение в виде .
Этап 3.8.2
Перенесем все члены без в правую часть уравнения.
Этап 3.8.2.1
Вычтем из обеих частей уравнения.
Этап 3.8.2.2
Вычтем из .
Этап 3.8.3
Разделим каждый член на и упростим.
Этап 3.8.3.1
Разделим каждый член на .
Этап 3.8.3.2
Упростим левую часть.
Этап 3.8.3.2.1
Сократим общий множитель .
Этап 3.8.3.2.1.1
Сократим общий множитель.
Этап 3.8.3.2.1.2
Разделим на .
Этап 3.8.3.3
Упростим правую часть.
Этап 3.8.3.3.1
Разделим на .
Этап 3.9
Заменим все вхождения на во всех уравнениях.
Этап 3.9.1
Заменим все вхождения в на .
Этап 3.9.2
Упростим правую часть.
Этап 3.9.2.1
Добавим и .
Этап 3.9.3
Заменим все вхождения в на .
Этап 3.9.4
Упростим правую часть.
Этап 3.9.4.1
Упростим .
Этап 3.9.4.1.1
Умножим на .
Этап 3.9.4.1.2
Добавим и .
Этап 3.10
Перечислим все решения.
Этап 4
Заменим каждый коэффициент элементарной дроби в значениями, найденными для , и .
Этап 5
Этап 5.1
Избавимся от скобок.
Этап 5.2
Умножим на .
Этап 5.3
Вычтем из .