Введите задачу...
Основы мат. анализа Примеры
Этап 1
Этап 1.1
Для каждого множителя в знаменателе создадим новую дробь, используя множитель в качестве знаменателя, а неизвестное значение — в качестве числителя. Поскольку у множителя 2-й порядок, в числителе должно быть членов. Количество необходимых членов в числителе всегда равно порядку множителя в знаменателе.
Этап 1.2
Умножим каждую дробь в уравнении на знаменатель исходного выражения. В этом случае знаменатель равен .
Этап 1.3
Сократим общий множитель .
Этап 1.3.1
Сократим общий множитель.
Этап 1.3.2
Перепишем это выражение.
Этап 1.4
Сократим общий множитель .
Этап 1.4.1
Сократим общий множитель.
Этап 1.4.2
Разделим на .
Этап 1.5
Упростим каждый член.
Этап 1.5.1
Сократим общий множитель .
Этап 1.5.1.1
Сократим общий множитель.
Этап 1.5.1.2
Разделим на .
Этап 1.5.2
Применим свойство дистрибутивности.
Этап 1.5.3
Перенесем влево от .
Этап 1.5.4
Сократим общий множитель и .
Этап 1.5.4.1
Вынесем множитель из .
Этап 1.5.4.2
Сократим общие множители.
Этап 1.5.4.2.1
Возведем в степень .
Этап 1.5.4.2.2
Вынесем множитель из .
Этап 1.5.4.2.3
Сократим общий множитель.
Этап 1.5.4.2.4
Перепишем это выражение.
Этап 1.5.4.2.5
Разделим на .
Этап 1.5.5
Применим свойство дистрибутивности.
Этап 1.5.6
Умножим на , сложив экспоненты.
Этап 1.5.6.1
Умножим на .
Этап 1.5.6.1.1
Возведем в степень .
Этап 1.5.6.1.2
Применим правило степени для объединения показателей.
Этап 1.5.6.2
Добавим и .
Этап 1.5.7
Перенесем влево от .
Этап 1.5.8
Применим свойство дистрибутивности.
Этап 1.5.9
Перепишем, используя свойство коммутативности умножения.
Этап 1.5.10
Сократим общий множитель .
Этап 1.5.10.1
Сократим общий множитель.
Этап 1.5.10.2
Разделим на .
Этап 1.5.11
Применим свойство дистрибутивности.
Этап 1.5.12
Умножим на , сложив экспоненты.
Этап 1.5.12.1
Перенесем .
Этап 1.5.12.2
Умножим на .
Этап 1.5.12.2.1
Возведем в степень .
Этап 1.5.12.2.2
Применим правило степени для объединения показателей.
Этап 1.5.12.3
Добавим и .
Этап 1.6
Упростим выражение.
Этап 1.6.1
Перенесем .
Этап 1.6.2
Перенесем .
Этап 1.6.3
Перенесем .
Этап 1.6.4
Перенесем .
Этап 2
Этап 2.1
Составим уравнение для переменных элементарной дроби, приравняв коэффициенты из каждой части уравнения. Чтобы уравнение было верным, эквивалентные коэффициенты в каждой части уравнения должны быть равны.
Этап 2.2
Составим уравнение для переменных элементарной дроби, приравняв коэффициенты из каждой части уравнения. Чтобы уравнение было верным, эквивалентные коэффициенты в каждой части уравнения должны быть равны.
Этап 2.3
Составим уравнение для переменных элементарной дроби, приравняв коэффициенты из каждой части уравнения. Чтобы уравнение было верным, эквивалентные коэффициенты в каждой части уравнения должны быть равны.
Этап 2.4
Составим уравнение для переменных элементарной дроби, приравняв коэффициенты членов, не содержащих . Чтобы уравнение было верным, эквивалентные коэффициенты в каждой части уравнения должны быть равны.
Этап 2.5
Составим систему уравнений, чтобы найти коэффициенты элементарных дробей.
Этап 3
Этап 3.1
Решим относительно в .
Этап 3.1.1
Перепишем уравнение в виде .
Этап 3.1.2
Разделим каждый член на и упростим.
Этап 3.1.2.1
Разделим каждый член на .
Этап 3.1.2.2
Упростим левую часть.
Этап 3.1.2.2.1
Сократим общий множитель .
Этап 3.1.2.2.1.1
Сократим общий множитель.
Этап 3.1.2.2.1.2
Разделим на .
Этап 3.1.2.3
Упростим правую часть.
Этап 3.1.2.3.1
Разделим на .
Этап 3.2
Заменим все вхождения на во всех уравнениях.
Этап 3.2.1
Заменим все вхождения в на .
Этап 3.2.2
Упростим правую часть.
Этап 3.2.2.1
Добавим и .
Этап 3.2.3
Перепишем уравнение в виде .
Этап 3.2.4
Разделим каждый член на и упростим.
Этап 3.2.4.1
Разделим каждый член на .
Этап 3.2.4.2
Упростим левую часть.
Этап 3.2.4.2.1
Сократим общий множитель .
Этап 3.2.4.2.1.1
Сократим общий множитель.
Этап 3.2.4.2.1.2
Разделим на .
Этап 3.2.4.3
Упростим правую часть.
Этап 3.2.4.3.1
Разделим на .
Этап 3.3
Заменим все вхождения на во всех уравнениях.
Этап 3.3.1
Перепишем уравнение в виде .
Этап 3.3.2
Заменим все вхождения в на .
Этап 3.3.3
Упростим правую часть.
Этап 3.3.3.1
Избавимся от скобок.
Этап 3.4
Решим относительно в .
Этап 3.4.1
Перепишем уравнение в виде .
Этап 3.4.2
Перенесем все члены без в правую часть уравнения.
Этап 3.4.2.1
Вычтем из обеих частей уравнения.
Этап 3.4.2.2
Вычтем из .
Этап 3.5
Решим систему уравнений.
Этап 3.6
Перечислим все решения.
Этап 4
Заменим каждый коэффициент элементарной дроби в значениями, найденными для , , и .