Введите задачу...
Основы мат. анализа Примеры
Этап 1
Этап 1.1
Разложим дробь на множители.
Этап 1.1.1
Вынесем множитель из .
Этап 1.1.1.1
Вынесем множитель из .
Этап 1.1.1.2
Вынесем множитель из .
Этап 1.1.1.3
Вынесем множитель из .
Этап 1.1.1.4
Вынесем множитель из .
Этап 1.1.1.5
Вынесем множитель из .
Этап 1.1.2
Разложим на множители, используя правило полных квадратов.
Этап 1.1.2.1
Перепишем в виде .
Этап 1.1.2.2
Проверим, чтобы средний член был равен удвоенному произведению корней из первого и третьего членов.
Этап 1.1.2.3
Перепишем многочлен.
Этап 1.1.2.4
Разложим на множители, используя правило выделения полного квадрата из квадратного трехчлена , где и .
Этап 1.2
Для каждого множителя в знаменателе создадим новую дробь, используя множитель в качестве знаменателя, а неизвестное значение — в качестве числителя. Поскольку множитель в знаменателе линейный, поместим одну переменную на его место .
Этап 1.3
Для каждого множителя в знаменателе создадим новую дробь, используя множитель в качестве знаменателя, а неизвестное значение — в качестве числителя. Поскольку множитель в знаменателе линейный, поместим одну переменную на его место .
Этап 1.4
Умножим каждую дробь в уравнении на знаменатель исходного выражения. В этом случае знаменатель равен .
Этап 1.5
Сократим общий множитель .
Этап 1.5.1
Сократим общий множитель.
Этап 1.5.2
Перепишем это выражение.
Этап 1.6
Сократим общий множитель .
Этап 1.6.1
Сократим общий множитель.
Этап 1.6.2
Разделим на .
Этап 1.7
Изменим порядок и .
Этап 1.8
Упростим каждый член.
Этап 1.8.1
Сократим общий множитель .
Этап 1.8.1.1
Сократим общий множитель.
Этап 1.8.1.2
Разделим на .
Этап 1.8.2
Перепишем в виде .
Этап 1.8.3
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 1.8.3.1
Применим свойство дистрибутивности.
Этап 1.8.3.2
Применим свойство дистрибутивности.
Этап 1.8.3.3
Применим свойство дистрибутивности.
Этап 1.8.4
Упростим и объединим подобные члены.
Этап 1.8.4.1
Упростим каждый член.
Этап 1.8.4.1.1
Умножим на .
Этап 1.8.4.1.2
Перенесем влево от .
Этап 1.8.4.1.3
Умножим на .
Этап 1.8.4.2
Вычтем из .
Этап 1.8.5
Применим свойство дистрибутивности.
Этап 1.8.6
Упростим.
Этап 1.8.6.1
Перепишем, используя свойство коммутативности умножения.
Этап 1.8.6.2
Перенесем влево от .
Этап 1.8.7
Сократим общий множитель .
Этап 1.8.7.1
Сократим общий множитель.
Этап 1.8.7.2
Разделим на .
Этап 1.8.8
Сократим общий множитель и .
Этап 1.8.8.1
Вынесем множитель из .
Этап 1.8.8.2
Сократим общие множители.
Этап 1.8.8.2.1
Умножим на .
Этап 1.8.8.2.2
Сократим общий множитель.
Этап 1.8.8.2.3
Перепишем это выражение.
Этап 1.8.8.2.4
Разделим на .
Этап 1.8.9
Применим свойство дистрибутивности.
Этап 1.8.10
Умножим на .
Этап 1.8.11
Перенесем влево от .
Этап 1.8.12
Применим свойство дистрибутивности.
Этап 1.8.13
Перепишем, используя свойство коммутативности умножения.
Этап 1.9
Упростим выражение.
Этап 1.9.1
Перенесем .
Этап 1.9.2
Изменим порядок и .
Этап 1.9.3
Перенесем .
Этап 1.9.4
Перенесем .
Этап 1.9.5
Перенесем .
Этап 2
Этап 2.1
Составим уравнение для переменных элементарной дроби, приравняв коэффициенты из каждой части уравнения. Чтобы уравнение было верным, эквивалентные коэффициенты в каждой части уравнения должны быть равны.
Этап 2.2
Составим уравнение для переменных элементарной дроби, приравняв коэффициенты из каждой части уравнения. Чтобы уравнение было верным, эквивалентные коэффициенты в каждой части уравнения должны быть равны.
Этап 2.3
Составим уравнение для переменных элементарной дроби, приравняв коэффициенты членов, не содержащих . Чтобы уравнение было верным, эквивалентные коэффициенты в каждой части уравнения должны быть равны.
Этап 2.4
Составим систему уравнений, чтобы найти коэффициенты элементарных дробей.
Этап 3
Этап 3.1
Решим относительно в .
Этап 3.1.1
Перепишем уравнение в виде .
Этап 3.1.2
Разделим каждый член на и упростим.
Этап 3.1.2.1
Разделим каждый член на .
Этап 3.1.2.2
Упростим левую часть.
Этап 3.1.2.2.1
Сократим общий множитель .
Этап 3.1.2.2.1.1
Сократим общий множитель.
Этап 3.1.2.2.1.2
Разделим на .
Этап 3.1.2.3
Упростим правую часть.
Этап 3.1.2.3.1
Разделим на .
Этап 3.2
Заменим все вхождения на во всех уравнениях.
Этап 3.2.1
Заменим все вхождения в на .
Этап 3.2.2
Упростим правую часть.
Этап 3.2.2.1
Избавимся от скобок.
Этап 3.2.3
Заменим все вхождения в на .
Этап 3.2.4
Упростим правую часть.
Этап 3.2.4.1
Умножим на .
Этап 3.3
Решим относительно в .
Этап 3.3.1
Перепишем уравнение в виде .
Этап 3.3.2
Вычтем из обеих частей уравнения.
Этап 3.4
Заменим все вхождения на во всех уравнениях.
Этап 3.4.1
Заменим все вхождения в на .
Этап 3.4.2
Упростим правую часть.
Этап 3.4.2.1
Упростим .
Этап 3.4.2.1.1
Умножим на .
Этап 3.4.2.1.2
Добавим и .
Этап 3.5
Решим относительно в .
Этап 3.5.1
Перепишем уравнение в виде .
Этап 3.5.2
Перенесем все члены без в правую часть уравнения.
Этап 3.5.2.1
Добавим к обеим частям уравнения.
Этап 3.5.2.2
Добавим и .
Этап 3.6
Решим систему уравнений.
Этап 3.7
Перечислим все решения.
Этап 4
Заменим каждый коэффициент элементарной дроби в значениями, найденными для , и .