Введите задачу...
Основы мат. анализа Примеры
Этап 1
Приравняем к .
Этап 2
Этап 2.1
Разложим левую часть уравнения на множители.
Этап 2.1.1
Перегруппируем члены.
Этап 2.1.2
Вынесем множитель из .
Этап 2.1.2.1
Вынесем множитель из .
Этап 2.1.2.2
Вынесем множитель из .
Этап 2.1.2.3
Вынесем множитель из .
Этап 2.1.3
Перепишем в виде .
Этап 2.1.4
Пусть . Подставим вместо для всех.
Этап 2.1.5
Разложим на множители, используя метод группировки.
Этап 2.1.5.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 2.1.5.2
Запишем разложение на множители, используя данные целые числа.
Этап 2.1.6
Заменим все вхождения на .
Этап 2.1.7
Вынесем множитель из .
Этап 2.1.7.1
Вынесем множитель из .
Этап 2.1.7.2
Вынесем множитель из .
Этап 2.1.8
Пусть . Подставим вместо для всех.
Этап 2.1.9
Разложим на множители, используя правило полных квадратов.
Этап 2.1.9.1
Переставляем члены.
Этап 2.1.9.2
Перепишем в виде .
Этап 2.1.9.3
Проверим, чтобы средний член был равен удвоенному произведению корней из первого и третьего членов.
Этап 2.1.9.4
Перепишем многочлен.
Этап 2.1.9.5
Разложим на множители, используя правило выделения полного квадрата из квадратного трехчлена , где и .
Этап 2.1.10
Заменим все вхождения на .
Этап 2.2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.3
Приравняем к , затем решим относительно .
Этап 2.3.1
Приравняем к .
Этап 2.3.2
Решим относительно .
Этап 2.3.2.1
Вычтем из обеих частей уравнения.
Этап 2.3.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 2.3.2.3
Перепишем в виде .
Этап 2.3.2.4
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 2.3.2.4.1
Сначала с помощью положительного значения найдем первое решение.
Этап 2.3.2.4.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 2.3.2.4.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 2.4
Приравняем к , затем решим относительно .
Этап 2.4.1
Приравняем к .
Этап 2.4.2
Решим относительно .
Этап 2.4.2.1
Приравняем к .
Этап 2.4.2.2
Вычтем из обеих частей уравнения.
Этап 2.5
Окончательным решением являются все значения, при которых верно.
Этап 3