Введите задачу...
Основы мат. анализа Примеры
Этап 1
Применим формулу тройного угла для синуса.
Этап 2
Воспользуемся бином Ньютона.
Этап 3
Этап 3.1
Применим правило умножения к .
Этап 3.2
Возведем в степень .
Этап 3.3
Перемножим экспоненты в .
Этап 3.3.1
Применим правило степени и перемножим показатели, .
Этап 3.3.2
Умножим на .
Этап 3.4
Применим правило умножения к .
Этап 3.5
Возведем в степень .
Этап 3.6
Перемножим экспоненты в .
Этап 3.6.1
Применим правило степени и перемножим показатели, .
Этап 3.6.2
Умножим на .
Этап 3.7
Умножим на , сложив экспоненты.
Этап 3.7.1
Перенесем .
Этап 3.7.2
Умножим на .
Этап 3.7.2.1
Возведем в степень .
Этап 3.7.2.2
Применим правило степени для объединения показателей.
Этап 3.7.3
Добавим и .
Этап 3.8
Умножим на .
Этап 3.9
Умножим на .
Этап 3.10
Применим правило умножения к .
Этап 3.11
Возведем в степень .
Этап 3.12
Перемножим экспоненты в .
Этап 3.12.1
Применим правило степени и перемножим показатели, .
Этап 3.12.2
Умножим на .
Этап 3.13
Умножим на .
Этап 3.14
Применим правило умножения к .
Этап 3.15
Перепишем, используя свойство коммутативности умножения.
Этап 3.16
Умножим на , сложив экспоненты.
Этап 3.16.1
Перенесем .
Этап 3.16.2
Применим правило степени для объединения показателей.
Этап 3.16.3
Добавим и .
Этап 3.17
Возведем в степень .
Этап 3.18
Умножим на .
Этап 3.19
Умножим на .
Этап 3.20
Применим правило умножения к .
Этап 3.21
Перепишем, используя свойство коммутативности умножения.
Этап 3.22
Умножим на , сложив экспоненты.
Этап 3.22.1
Перенесем .
Этап 3.22.2
Применим правило степени для объединения показателей.
Этап 3.22.3
Добавим и .
Этап 3.23
Возведем в степень .
Этап 3.24
Умножим на .
Этап 3.25
Применим правило умножения к .
Этап 3.26
Возведем в степень .